_ ,	概率		1
	1.1 1.2 1.3	有关概率的基本概念	2
二,	一维	准随机变量	9
	2.1 2.2 2.3 2.4	随机变量的基本概念	10
三、	二维	准随机变量	22
	3.1 3.2 3.3 3.4 3.5	二维离散变量	24 30 32
四、	随机	N.变量的数字特征	36
	4.1 4.2 4.3	期望与方差	41
五、	大数	数定理与中心极限定理	46
	5.15.25.3	切比雪夫不等式	47
六、	数理	里统计基本概念	50
	6.1 6.2	三大抽样分布 样本均值与样本方差的分布	
七、	参数	数估计与假设检验	55
	7.1 7.2 7.3	点估计:矩估计/最大似然估计 区间估计	61

概率事件和概率

有关概率的基本概念 1.1

基本关键词:

样本空间: Ω , 指全部可能事件的集合。

空集: Ø, 指不可能的事件。

交集: $A \cap B$, 指事件A与事件B共同发生。

并集: $A \cup B$, 指事件A或事件B发生, 两者至少发生一件即可。

互斥(互不相容): A与B互斥,则两事件不可能同时发生。

对立: A与B对立,则两事件不可能同时发生,但两者必然其中一个会发生。

概率公理:

1. 非负性:任何事件的概率都不是负数, $P(A) \ge 0$ 。

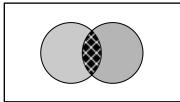
2. 可加性:如果事件 $A_1 \, \cdot \, A_2 \, \cdot \, \cdots \, \cdot \, A_n$ 互斥,则 $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + A_1 \cup A_2 \cup \cdots \cup A_n$ $P(A_2) + \cdots + P(A_n)_{\circ}$

3. 归一性:整个样本空间 Ω 也被称为必然事件,它的概率为 1, $P(\Omega) = 1$ 。

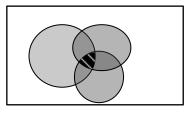
概率运算性质:如果A、B、C为三个事件,则:

(1) 加法律:

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(C \cap B) P(A \cap C) +$ $P(A \cap B \cap C)$
- (2) 减法律:
- \bullet $P(\overline{A}) = 1 P(A)$
- $P(A B) = P(A) P(A \cap B)$
- (3) 结合律:
- \bullet $A \cap (B \cap C) = (A \cap B) \cap C$
- \bullet $A \cup (B \cup C) = (A \cup B) \cup C$
- (4) *分配律:
- $\bullet \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\bullet \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (5) *补集定律(德摩根定律):
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (只要不同时在A, B里就行) 可推广: $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{B}$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (既不能在A里也不能在B里) 可推广: $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{B}$



$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$



 $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $-P(A \cap B) - P(A \cap B) - P(A \cap B)$ $+ P(A \cap B \cap C)$

【例题 1.1.1 基础题】

1. 已知
$$P(A) = \frac{1}{2}$$
, (1) 若 A , B 互不相容,求 $P(A\bar{B})$ (2) 若 $P(AB) = \frac{1}{8}$, 求 $P(A\bar{B})$ 。

2.
$$\vdash P(A) = \frac{1}{2}, P(B) = \frac{1}{3}, P(C) = \frac{1}{5}, P(AB) = \frac{1}{10}, P(AC) = \frac{1}{15}$$
, $P(BC) = \frac{1}{10}$

 $\frac{1}{20}$, $P(ABC) = \frac{1}{30}$, 求 $A \cup B$, $\bar{A}\bar{B}$, $A \cup B \cup C$, $\bar{A}\bar{B}\bar{C}$, $\bar{A}\bar{B}C$, $\bar{A}\bar{B}\cup C$ 的概率。

解:

1. (1)
$$P(A\overline{B}) = P(A - AB) = P(A) - P(AB) = \frac{1}{2}$$
.

(2)
$$P(A\overline{B}) = P(A - AB) = P(A) - P(AB) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$

2.
$$P(A \cup B) = P(A) + P(B) - P(AB) = \frac{1}{2} + \frac{1}{3} - \frac{1}{10} = \frac{11}{15}$$

$$P(\bar{A}\bar{B}) = P(\bar{A} \cup \bar{B}) = 1 - P(A \cup B) = \frac{4}{15}.$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) = \frac{17}{20}$$

$$P(\bar{A}\bar{B}\bar{C}) = P(\bar{A}\cup\bar{B}\cup\bar{C}) = 1 - P(A\cup\bar{B}\cup\bar{C}) = \frac{3}{20}$$

$$P(\bar{A}\bar{B}C) = P(\bar{A}\bar{B}) - P(\bar{A}\bar{B}\bar{C}) = \frac{7}{60}$$

$$P(\bar{A}\bar{B}\cup C) = P(\bar{A}\bar{B}) + P(C) - P(\bar{A}\bar{B}C) = \frac{7}{20}$$

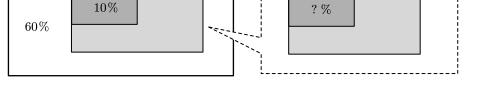
1.2 条件概率、全概率公式、贝叶斯公式

条件概率公式:

$$P(A \mid B) = \frac{P(AB)}{P(B)} \stackrel{\text{def}}{=} P(A \mid B)P(B)$$

拓展: 假定有一系列事件, A_1 、 A_2 、…、 A_n , 则有公式:

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid A_1 \cap A_2 \cap \dots \cap A_{n-1})$$



【例题 1.2.1 基础题】从"probability"这个单词中每次抽取一个字母(不放回),求抽出 4 个字母刚好组成"lity"的概率P。

解:从 11 个字母中首先取出"1",其概率为 $\frac{1}{11}$;之后从剩余的 10 个字母中取出 i 的概率为 $\frac{2}{10}$,以此类推,所求概率为:

$$P = \frac{1}{11} \times \frac{2}{10} \times \frac{1}{9} \times \frac{1}{8} = \frac{1}{3960}$$

【例题 1.2.2 基础题】将 3 个小球随机地扔进 4 个杯子中:分别求一个杯子中最多有 3、2、1 个球的概率。

解:分别将一个杯子中最多有 3、2、1 个球记为事件 A_3 , A_2 , A_1 求 A_1 : 首先将一个小球丢进 4 个当中任意一个杯中,第二个球必须丢进另外 3 个杯子之一,第三个球必须丢进另外 2 个杯子之一。所以概率为:

$$P(A_1) = 1 \times \frac{3}{4} \times \frac{2}{4} = \frac{3}{8}$$

求 A_3 : 首先将一个小球丢进 4 个当中任意一个,第二个球、第三个球也必须丢进同一个杯子,所以概率为:

$$P(A_3) = 1 \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

已知 A_1 、 A_3 则很容易求 A_2 :

$$P(A_2) = 1 - P(A_1) - P(A_3) = \frac{9}{16}$$

【例题 1.2.3 基础题】有 18 个学生,其中 3 个研究生,15 个本科生。现在将学生随机划分为 3 组,每组 6 人。请问每组都有一个研究生的概率P是多少?

解: 我们将分组过程理解为"选座位"的过程:

A 组:

为了能让三个研究生分开,按照下面流程:让一个研究生先从中随意选一个位置,

第二个研究生从剩余的 17 个座位中需要选择另外其他组的 12 个座位, 第三个研 究生需要从剩余16个座位中选择最后一组的6个座位才可以。所以本题所求概率 为:

$$P = 1 \times \frac{12}{17} \times \frac{6}{16} = \frac{9}{34}$$

如果 $B_1, B_2, ..., B_n$ 是一个完备事件组(即两两互斥,且并集为样本空间),则有如 下两个重要公式:

全概率公式:

$$P(A) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)$$

贝叶斯公式:

$$P(B_k \mid A) = \frac{P(B_k)P(A \mid B_k)}{P(A)}$$

【例题 1.2.4 基础题】假设一个城市下雨的概率是20%,并且下雨时堵车的概率 是80%,不下雨时堵车的概率是10%。

- (1) 不知道明天是否下雨,请问堵车的概率是多少?
- (2) 已知堵车了,请问外面下雨的概率是多少?

解:(1)基于全概率公式: 堵车概率=下雨概率×下雨堵车的概率+不下雨概率×不 下雨堵车概率

$$P(44 \pm 1) = 0.2 \times 0.8 + 0.8 \times 0.1 = 0.24$$

(2) 基于贝叶斯公式:

$$P($$
下雨 | 堵车 $) = \frac{P($ 下雨 $)P($ 堵车 | 下雨 $)}{P($ 堵车 $)} = \frac{0.2 \times 0.8}{0.24} = \frac{2}{3}$

怎样理解全概率与贝叶斯

一件事情发生的原因有多种,全概率公式告诉我们如何全面地计算一件事情地可 能性:

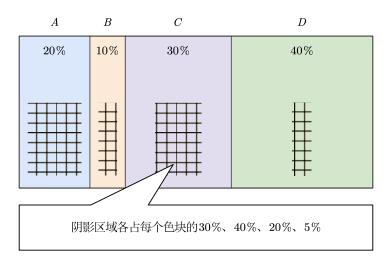
一件事情发生的概率 = 原因 $A \times$ 概率A + 原因 $B \times$ 概率B + 原因 $C \times$ 概率 $C + \cdots$

如果一件事情已经发生了, 贝叶斯公式帮助确定这件事情背后的原因:

原因 $A \times$ 概率A

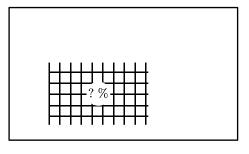
也可借助下图理解:

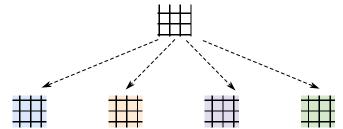
考研数学全面基础课: 概率论与数理统计



全概率公式: 阴影区域占整个矩形的比例?

贝叶斯公式:已知某点处于阴影区域中,其在A(B/C/D)中的概率是?





【例题 1.2.5 基础题】假设人群中有 4%患有乙肝。现在有一种检测试剂,不论患 者是否患病,它都具有95%的准确率。

- (1) 如果人群中随机抽一人来做检测,有多少概率呈阳性?
- (2) 如果一个人的检测结果为阳性,请问他多大概率是真患病?

解:(1)基于全概率公式:

 $P(\Xi$ 阳性)=P(患病 $)\times P($ 测验准确|患病)+P(不患病 $)\times P($ 测验不准确|不患病)

$$P($$
呈阳性 $) = 0.04 \times 0.95 + 0.96 \times 0.05 = 0.086$

(2) 基于贝叶斯公式:

$$P($$
患病|呈阳性 $) = \frac{P($ 患病 $) \times P($ 测验准确|患病 $)}{P($ 呈阳性 $)} = \frac{0.04 \times 0.95}{0.086} \approx 0.44186$

【例题 1.2.6 基础题】一个学生接连参加同一课程的两次考试,第一次及格的概 率为p,若第一次及格则第二次及格的概率也为p;若第一次不及格则第二次及格的 概率为 $\frac{p}{2}$ 。

- (1) 求学生至少有一次及格的概率。
- (2) 若已知他第二次已经及格,求他第一次及格的概率。

解:(1)本题适合先求出对立事件的概率:学生一次也没有及格记为事件B,则:

$$P(B) = (1-p)\left(1-\frac{p}{2}\right) = 1-\frac{3p}{2} + \frac{p^2}{2}$$

所以至少有一次及格的概率为:

$$1 - P(B) = \frac{3p}{2} - \frac{p^2}{2}$$

(2) 根据贝叶斯公式可知:

$$P($$
第一次及格 | 第二次及格 | 第二次及格 | 第一次及格 $)P($ 第一次及格 $)$ $P($ 第二次及格 $)$

$$= \frac{p^2}{p^2 + \frac{(1-p)p}{2}} = \frac{2p}{1+p}$$

【例题 1.2.7 中等题】(2024 数学一/数学三 5分)设随机试验每次成功的概率 为p, 现进行 3 次独立重复试验, 在至少成功 1 次的条件下 3 次试验全部成功的

概率为
$$\frac{4}{13}$$
,则 $p = ____$.

独立事件: A和B作为两个事件, 如果它们之间发生的因果几乎有很少关联, 则两 个事件是否发生不会互相影响。如果两者独立,则有:

$$P(A \cap B) = P(A) \cdot P(B)$$

在条件概率的层面来看待就是:

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

怎样理解独立事件

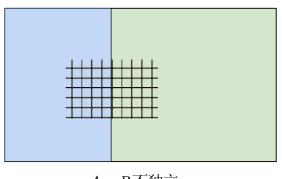
正如上例中:

- (1) 一个城市下雨的概率是20%,并且下雨时堵车的概率是80%,不下雨时堵车 的概率是 10%。显然,下雨和堵车并非独立事件。怎样修改这句话,可以使它们独 \overrightarrow{y} ?
- (2) 人群中有 4%患有乙肝, 检测试剂不论患者是否患病, 它都具有 95%的准确 率。显然测试者患病与否和试剂是否准确是独立的。怎样修改这句话,可以使它们 不独立?

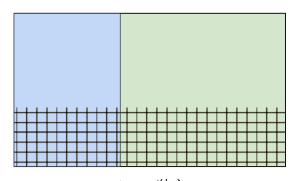
利用图片理解:

A: 蓝色区域 $\overline{A}:$ 绿色区域

B: 有花纹 B: 无花纹



A, B不独立



A, B独立

【例题 1.2.8 基础题】设A n B 分别是概率大于 0 的事件,则下列说法正确的是 ()

- A. 若A和B互不相容,则两者相互独立。
- B. 若A和B相互独立,则两者互不相容。
- C. P(A) = P(B) = 0.6,则两者互不相容。
- D. P(A) = P(B) = 0.6,则两者可能相互独立。(D 为正确选项)

【例题 1.2.9 拔高题】(2021 数学-/数学三 5 分)设A,B为随机事件,且

0 < P(B) < 1. 下列命题中为假命题的是

- A. 若P(A|B) = P(A), 则 $P(A|\bar{B}) = P(A)$.
- B. 若P(A|B) > P(A), 则 $P(\bar{A}|\bar{B}) > P(\bar{A})$.
- D. <math> <math>

答案: D

选项 A 分析:

①P(A|B) = P(A), 说明A = B相互独立, 则同时就有:

 \bar{A} 与B相互独立、A与 \bar{B} 相互独立、 \bar{A} 与 \bar{B} 相互独立。

$$P(A \mid \bar{B}) = P(A)$$

(2)P(A|B) = P(A), 两者独立则有: P(AB) = P(A)P(B),

$$P(A | \bar{B}) = \frac{P(A\bar{B})}{P(\bar{B})} = \frac{P(A) - P(AB)}{1 - P(B)} = \frac{P(A)[1 - P(B)]}{1 - P(B)} = P(A)$$

选项 B 分析:

$$\begin{split} P(\bar{A} \,|\, \bar{B}) &= \frac{P(\bar{A}\bar{B})}{P(\bar{B})} = \frac{P(\bar{A} \cup B)}{1 - P(B)} = \frac{1 - P(A \cup B)}{1 - P(B)} \\ &= \frac{1 - [P(A) + P(B) - P(AB)]}{1 - P(B)} = \frac{1 - P(A) - P(B) + P(AB)}{1 - P(B)} \end{split}$$

根据题目信息: P(A|B) > P(A), 说明P(AB) > P(A)P(B), 由此得到上式的转化:

$$\begin{split} P\left(\bar{A}\,|\,\bar{B}\right) &= \frac{1 - P(A) - P(B) + P(AB)}{1 - P(B)} > \frac{1 - P(A) - P(B) + P(A)P(B)}{1 - P(B)} \\ &\frac{1 - P(A) - P(B) + P(A)P(B)}{1 - P(B)} &= \frac{[1 - P(A)]\,[1 - P(B)]}{1 - P(B)} = P\left(\bar{A}\right) \end{split}$$

选项 C 分析:

$$P(A \mid B) > P(A \mid \bar{B})$$
, $\emptyset \uparrow \frac{P(AB)}{P(B)} > \frac{P(A\bar{B})}{P(\bar{B})} = \frac{P(A) - P(AB)}{1 - P(B)}$

$$P(AB)[1-P(B)] > P(B)[P(A)-P(AB)]$$

 $P(AB) > P(A)P(B)$

分析结论: 要想获得P(A|B) > P(A), 则有:

$$P(A|B) = \frac{P(AB)}{P(B)} > \frac{P(A)P(B)}{P(B)} = P(A)$$

该说法成立。

选项 D 分析:

 $P(A|A\cup B) > P(\bar{A}|A\cup B)$ 则有:

$$\frac{P(A)}{P(A \cup B)} > \frac{P(\overline{A}B)}{P(A \cup B)}$$

$$P(A) > P(B) - P(AB)$$

这个就不一定能推断P(A)>P(B),我们可以举出一个反例(符合前置条件 P(A)>P(B)-P(AB),但是得出结论与题目所给结论相反 $P(A)\leq P(B)$),比如:

$$P(A) = P(B) = 0.3, P(AB) = 0.1$$

【例题 1.2.10 基础题】(2022 数学-/数学=5分)设A,B,C为随机事件,且A与B互不相容,A与C互不相容,B与C相互独立, $P(A)=P(B)=P(C)=\frac{1}{3}$,则 $P(B\cup C|A\cup B\cup C)=$ _____.

答案: $\frac{5}{8}$

【例题 1.2.11 基础题】(2025 数学一 5分)设A,B为两个随机事件,且A与B相互独立.已知 $P(A)=2P(B),P(A\cup B)=\frac{5}{8}$,则在事件A,B至少有一个发生的条件下,A,B中恰有一个发生的概率为_____.

答案: 4 F

【例题 1.2.12 基础题】(2025 数学三 5分)设A,B,C为三个随机事件,且A与

B相互独立, B与C相互独立, A与C互不相容. 已知 $P(A) = P(C) = \frac{1}{4}$, $P(B) = \frac{1}{2}$,则在事件A,B,C至少有一个发生的条件下,A,B,C中恰有一个发生的 概率为

答案: $\frac{2}{3}$

古典概型 1.3

古典概型(离散均匀概率定律)

样本空间由n个等可能的基本事件构成,则事件A的概率为:

$$P(A) = \frac{\text{$\frac{\$}{A}$ et al. (A)}}{n}$$

【例题 1.3.1 基础题】假设有6位同学按照随机顺序坐在一排6个座位上,请问: 同学 A 和同学 B 相邻的概率是多少?

解:按照排列数计算,样本空间中共有6!=720种等可能的方案。而其中如果令AB 相邻,则可将两者看为一个整体,在可能存在的5个位置中相邻而坐,另外4位同 学在4个位置中自由排列,并且需要考虑到AB相邻时两者的排列,所以对应的样 本数量为:

$$5 \times 4! \times 2 = 240$$

所以所求概率为:

$$P = \frac{240}{720} = \frac{1}{3}$$

二、一维随机变量

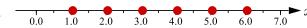
随机变量的基本概念 2.1

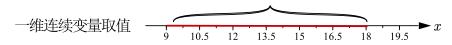
看下面几个例子:

- **掷骰子**: 掷一次普通的六面骰子,将出现的点数记为c。 (1)
- **投硬币**: 投掷 100 次硬币, 统计正面出现的次数, 记为 α 。 (2)
- **班级人数**:在一个学校里随机选择一个班级,将学生人数记为n。 (3)
- **身高**:测量一群人的身高,将结果记为h。 (4)
- **重量**:记录某个产品的质量,将结果记为m。 (5)
- 时间:记录一个运动员跑 100 米的时间为t。

随机变量是实验结果的实值函数:将实验结果与某个实数绑定。而随机变量可根据 分布特点划为两种情况: 离散随机变量和连续随机变量。

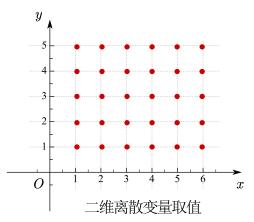
一维离散变量取值

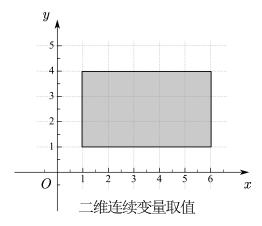




除了一维变量,还常见二维变量,比如:

- (1) **考试成绩**:将学生的英语分数a和数学分数b记录为一个二维数据(a,b)。
- (2) **温度湿度**: 将城市中一天内的平均温度T与湿度W记录为一个二维数据 (T,W)。





2.2 一维离散变量

2.2.1 二项分布

二项分布:实验只有两种结果,A和 \overline{A} ,且P(A) = p。将该实验独立地重复n次,则在这n次中,事件A发生的次数记为X,则它的概率分布律为:

$$P(X = k) = C_n^k p^k (1 - p)^{n - k} = \frac{n(n - 1) \cdot \dots \cdot (n - k + 1)}{k!} p^k (1 - p)^{n - k}$$

这时我们说"随机变量X服从参数为n,p的二项分布",记为 $X \sim b(n,p)$ 。

【例题 2.2.1 基础题】假设一个产品的合格率为 80%,现在抽检 5 件,请求出合格品个数X的分布律。

解:根据题意, X~b(5,0.8),取值为0,1,2,3,4,5。并且:

$$P(X=0) = C_5^0(0.8)^0(0.2)^5 = 0.00032$$

$$P(X=1) = C_5^1(0.8)^1(0.2)^4 = 0.00640$$

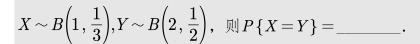
$$P(X=2) = C_5^2(0.8)^2(0.2)^3 = 0.05120$$

$$P(X=3) = C_5^3(0.8)^3(0.2)^2 = 0.20480$$

$$P(X=4) = C_5^4(0.8)^4(0.2)^1 = 0.40960$$

$$P(X=5) = C_5^5(0.8)^5(0.2)^0 = 0.32768$$

【例题 2.2.2 基础题】(2023 数学-5) 设随机变量X与Y相互独立,且



答案: $\frac{1}{3}$

2.2.2 泊松分布

泊松分布:基于二项分布,但是当n足够大 $(n \ge 20)$ 且p数值较小 $(p \le 0.05)$ 时,可以采用泊松分布公式:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \ (\lambda = np)$$

这时我们说"随机变量X服从参数为 λ 的泊松分布",记为 $X \sim \pi(\lambda)$ (或者 $P(\lambda)$)。

【例题 2.2.3 基础题】计算机硬件公司制造某种特殊型号的微型芯片,次品率达 0.1%,各芯片的品质相互独立。求在 1000 只产品中至少有 2 只次品的概率。

以X记产品中的次品数,则 $X\sim b(1000, 0.001)$ 。所求概率为

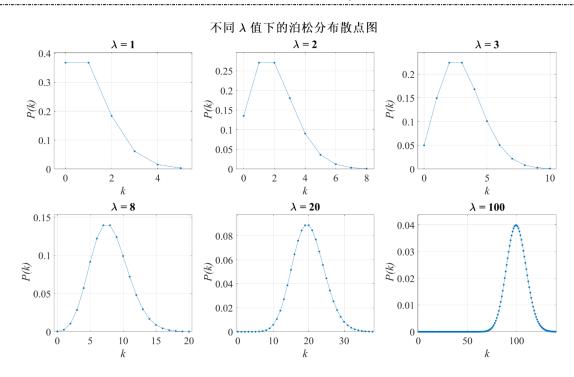
$$P\{X \ge 2\} = 1 - P\{X = 0\} - P\{X = 1\}$$
$$= 1 - 0.999^{1000} - {1000 \choose 1} 0.999^{999} \times 0.001 = 0.2642411$$

这个表达式实际情况下运算量较大。我们利用泊松分布来近似计算,首先确定期望值,

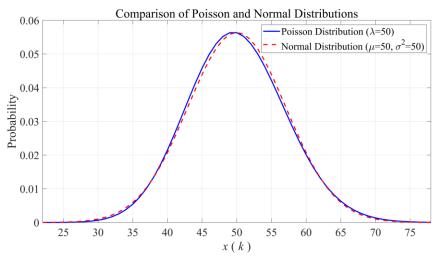
$$\lambda = 1000 \times 0.001 = 1$$

代入泊松分布:

$$P\{X \geq 2\} = 1 - P\{X = 0\} - P\{X = 1\} \approx 1 - \frac{1^0}{0!} e^{-1} - \frac{1^1}{1!} e^{-1} \approx 0.2642411$$



*拓展知识: 当λ越来越大时,其曲线越发接近正态分布。



*拓展知识: 泊松分布的由来

令二项分布中的 $n \to +\infty$,并且记 $\lambda = np$,则得到:

$$P(X = k) = \lim_{n \to +\infty} \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!} p^{k} (1-p)^{n-k} = \frac{\lambda^{k}}{k!} e^{-\lambda}$$

我们甚至可以验证,如果将 $X = 0,1,2,3\cdots,n$ 对应的概率全部相加,得到的结果应为 1。需要借助《高等数学(上)》的泰勒展开公式:

$$e^{x} = 1 + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} = \sum_{k=0}^{n} \frac{x^{k}}{k!}$$
$$\sum_{k=0}^{n} \frac{\lambda^{k}}{k!} = e^{\lambda}$$

【例题 2.2.4 基础题】(2025 数学一/数学三 5分)设 X_1, X_2, \cdots, X_{20} 是来自总体

B(1,0.1)的简单随机样本。令 $T = \sum_{i=1}^{20} X_i$,利用泊松分布近似表示二项分布的方法

可得 $P\{T \leq 1\} \approx$

- A. $\frac{1}{e^2}$.
- B. $\frac{2}{e^2}$
- C. $\frac{3}{e^2}$.
- D. $\frac{4}{e^2}$.

答案: C

*拓展知识:泊松分布的实用意义

如果一个书店每天平均能卖出 20 本书,则它每天卖出的图书本数 X_1 的分布律为 $X_1 \sim \pi(20)$;

如果一个医院每天平均接待 100 位病人,则它每天接待人数 X_2 的分布律为 $X_2 \sim \pi(100)$;

如果一个路口平均每小时通过 200 辆汽车,则它每小时通过车数 X_3 的分布律为 $X_3 \sim \pi(200)$

.

原理推理: 比如你是书店老板,假设每天营业 10 小时能卖出 20 本书,并且假设一天内顾客进店的概率是均匀的。则意味着: 如果将一天的时间分为n份(n是一个足够大的正整数),则一份时间内卖出一本书的概率是 $p = \frac{20}{n}$ 。则一天内相当于进行了n次的二项分布实验,所卖出总的图书数量 X_1 为:

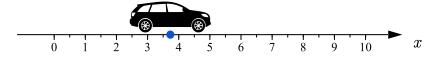
$$P(X_1 = k) = \lim_{n \to +\infty} C_n^k p^k (1-p)^{n-k} = \frac{20^k}{k!} e^{-20}$$
 (己知: $np = 20$)

2.3 一维连续变量

2.3.1 概率密度函数与概率分布函数

设想以下几种情况:

- (1) 让一辆车随机停在街边的某个位置,坐标记为x。
- (2) 一个运动员跑 $100 \, \text{米所需的时间,记为} t$ 。 如何描述随机变量x和t的取值情况?需要认识什么是概率密度函数。



设X是一个连续随机变量,x是任意实数,则有以下定义。概率密度函数(PDF, Probability Density Function):

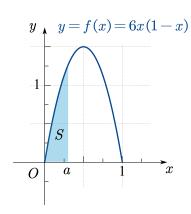
$$f(x) = \lim_{\Delta x \to 0} \frac{P(x \le X \le x + \Delta x)}{\Delta x}$$

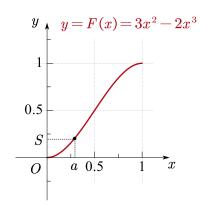
概率分布函数 (CDF, Cumulative Distribution Function):

$$F(x) = P(X \le x)$$

	密度函数 $f(x)$	分布函数 $F(x)$			
两端	$x \to \infty, f(x) \to 0$	$x \to -\infty, F(x) \to 0;$ $x \to +\infty, F(x) \to 1$			
单调 性	不一定	单调递增			
阴影 面积	$\int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$	不一定			
应用 场景	关注特定区间的概率情况	关注左侧(≤)的整体累积情况			
关联 $F'(x) = f(x)$					

$$\int_{-\infty}^{x} f(x) \mathrm{d}x = F(x)$$





概率密度函数(PDF)

概率分布函数(CDF)

【例题 2.3.1 基础题】设某个连续随机变量的概率密度函数f(x)如下,请分别求出它们的概率分布函数F(x):

(1)
$$f(x) = \begin{cases} 2\left(1 - \frac{1}{x^2}\right), 1 \le x \le 2\\ 0, others \end{cases}$$

(2)
$$f(x) = \begin{cases} cx & , 0 \le x \le 1 \\ \frac{-c}{3}(x-4) & , 1 < x \le 4 \end{cases}$$
 (其中 c 是某个非零常数) 0 , others

(1) 概率分布函数为:

$$\int_{-\infty}^{x} f(t) dt = F(x)$$

当x < 1时: F(x) = 0

当
$$1 \le x \le 2$$
时: $F(x) = \int_{1}^{x} 2\left(1 - \frac{1}{t^{2}}\right) dt = 2x + \frac{2}{x} - 4$

当x > 2时: F(x) = 1

也可写为:

$$F(x) = \begin{cases} 0, & x < 1 \\ 2x + \frac{2}{x} - 4, & 1 \le x \le 2 \\ 1, & x > 2 \end{cases}$$

(2) 首先需要求出其中未知参数c的值:

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} cx dx + \int_{1}^{4} -\frac{c}{3}(x-4) dx = 1$$
$$2c = 1, c = \frac{1}{2}$$

进一步求出分布函数为:

老研数学全面其础课、概率论与数理统计

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{4}, & 0 \le x \le 1 \\ 1 - \frac{(x-4)^2}{12}, & 1 < x \le 4 \\ 1, & x > 4 \end{cases}$$

【例题 2.3.2 基础题】设随机变量X的分布函数为:

$$F_{X}(x) = \begin{cases} 0 & , x \leq 1 \\ \ln x & , 1 < x \leq e \\ 1 & , x > e \end{cases}$$

- (1) 求概率 $P(X \le 2)$, $P(1.5 \le X \le 2)$, P(X > 1.2)
- (2) 求X的概率密度函数 $f_X(x)$.

解: (1) 根据概率分布函数的定义,可知:

$$P(X \le 2) = F_X(2) = \ln 2$$

$$P(1.5 \le X \le 2) = F_X(2) - F_X(1.5) = \ln 2 - \ln 1.5$$

$$P(X > 1.2) = 1 - F_X(1.2) = 1 - \ln 1.2$$

(2) 根据F'(x) = f(x), 可得:

$$F_X(x) = \left\{ egin{array}{ll} rac{1}{x}, & 1 < x \leq \mathrm{e} \ 0, & others \end{array}
ight.$$

【例题 2.3.3 中等题】某个电子元件的寿命X(单位: 小时)的概率密度如下:

$$f_{\scriptscriptstyle X} = \left\{ egin{array}{ll} rac{1000}{x^2} & , x > 1000 \ 0 & , others \end{array}
ight.$$

现在从一批电子元件中抽取 5 只进行质检,各元件的寿命情况相互独立。请求出 5 只器件中至少有 4 只的寿命超过 1200 小时的概率 P。

解: 单只元件寿命超过 1200 小时的概率为:
$$\int_{1200}^{+\infty} \frac{1000}{x^2} dx = -\frac{1000}{x} \bigg|_{1200}^{+\infty} = \frac{5}{6}$$

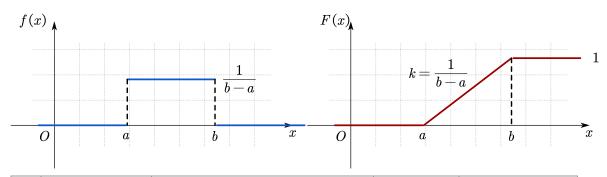
则 5 只器件中有N只的寿命超过 1200 小时,N服从二项分布 $b\left(5,\frac{5}{6}\right)$

$$P\{N \ge 4\} = P\{N = 4\} + P\{N = 5\} = C_5^4 \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)^1 + C_5^5 \left(\frac{5}{6}\right)^5 \left(\frac{1}{6}\right)^0 = \frac{3125}{3888}$$

$$\approx 0.8038$$

之后我们将重点学习均匀分布、正态分布、指数分布这三种常见的随机变量分布。

2.3.2 均匀分布U(a,b)



	概率密度 PDF	概率分布 CDF	期望	方差
均匀分布	$f(x) = \frac{1}{b-a}$ $a \le x \le b$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$	$\mu=rac{a+b}{2}$	$\sigma^2\!=\!rac{(b-a)^2}{12}$

【例题 2.3.4 基础题】设A在(-5,5)之间服从均匀分布,求以下方程有实数根的概率:

$$4x^2 + 4Ax + A + 2 = 0$$

答案:

$$\Delta = (4A)^2 - 4 \times 4 \times (A+2) \ge 0$$
$$A \ge 2 \text{ or } A \le -1$$

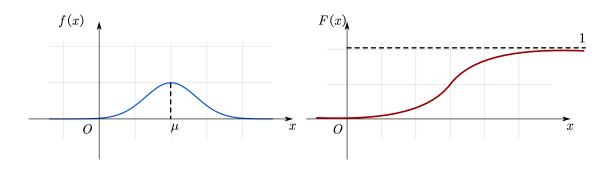
根据均匀分布特征, A 的概率密度函数为:

$$f(x) = \begin{cases} \frac{1}{10} & , -5 < x < 5 \\ 0 & , others \end{cases}$$

所以

$$P(A \ge 2 \text{ or } A \le -1) = \frac{7}{10}$$

2.3.3 正态分布 $N(\mu, \sigma^2)$



	概率密度 PDF	概率分布 CDF	期望	方差
正态分布	$arphi(x) = rac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}} \ x \in R$	$\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$	μ	σ^2

【例题 2.3.5 基础题】记标准正态分布函数为 $\Phi(x)$,请利用 $\Phi(x)$ 表达下面的概率结果。

$$X \sim N(3,4), \, \text{\vec{x}} P(1 < X \le 4), \, P(X > 2), \, P(X < -1), \, P(|X| > 3)$$

$$P(1 < X \le 4) = P\left(-1 < \frac{X-3}{2} \le \frac{1}{2}\right) = \Phi\left(\frac{1}{2}\right) - \Phi(-1)$$

$$P(X > 2) = P\left(\frac{X-3}{2} > -\frac{1}{2}\right) = \Phi\left(-\frac{1}{2}\right)$$

$$P(X < -1) = P\left(\frac{X-3}{2} < -2\right) = \Phi(-2)$$

$$P(|X| > 3) = P(X > 3 \text{ or } X < -3) = P\left(\frac{X-3}{2} > 0\right) + P\left(\frac{X-3}{2} < -3\right)$$

$$= \frac{1}{2} + \Phi(-3)$$

【例题 2.3.6 基础题】设变量 $X \sim N(0,1)$,利用正态分布积分表求解以下问题

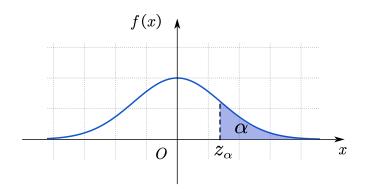
- (1) P(X > 2)
- (2) P(X > -3)
- (3) P(X < -2)
- (4) $\Rightarrow P(|X| < a) = 0.6$, 请求出正数a (保留 2 位小数)。
- (5) $\phi P(|X| > b) = 0.5$, 请求出正数b (保留 2 位小数)。
- (1) $P(X > 2) = 1 P(X < 2) = 1 \Phi(2) = 1 0.9772 = 0.0228$
- (2) $P(X > -3) = 1 \Phi(-3) = \Phi(3) = 0.9987$
- (3) $P(X < -2) = \Phi(-2) = 1 \Phi(2) = 0.0228$
- (4) P(|X| < a) = 0.6, 则 $\Phi(X) = 0.8$, 查表可知X = 0.84
- (5) P(|X| > b) = 0.5, 则 $\Phi(X) = 0.75$, 查表可知X = 0.67

考研数学全面基础课: 概率论与数理统计

附表 2 标准正态分布表

	$J^{-\infty}\sqrt{2\pi}$						х				
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.5 0.6915 0.6591 0.6628 0.6644 0.6700 0.7036 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7544 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7337 0.7389 0.7422 0.7454 0.7744 0.7784 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7894 0.7644 0.7794 0.7893 0.801 0.802 0.80	\boldsymbol{x}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6044 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7794 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8156 0.8888 0.8907 0.8929 0.8749 0.8770 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8572	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7549 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.8551 0.8080 0.8133 0.7852 0.8189 0.8186 0.8212 0.8238 0.8261 0.8073 0.8133 0.8656 0.8880 0.8203 0.8515 0.8870 0.8529 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8866 0.8880 0.8709 0.8115 0.	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7865 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8381 1.0 0.8413 0.8483 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8869 0.8888	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7622 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9949	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7811 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8449 0.8669 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9925 0.9415 0.9147 0.9142 0.917 0.9142 0.9142 0.9424 0.9444 0.9449	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8465 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9666 0.9822 0.9999 0.9115 0.9131 0.9147 0.9162 0.9171 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9463	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9463	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9117 1.5 0.9332 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9541 1.7 0.9554 0.9573	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8577 0.8599 0.8521 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9541 1.7 0.9564 0.9564 0.9573 0.9582 0.9591 0.9568 0.9661 0.9625 0.9633 1.8 0.9611 0.9649 0.9726	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9668 0.9693 0.9699 0.9766 1.9 0.9713 0.9772 0.9783 0.9784 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9771 0.9782	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9826 0.9880 0.9834	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9676 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9778 0.9783 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 0.9857 2.2 0.9861 0.9864	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9884 0.9884 0.9887 0.9896 2.3 0.9893 0.9996 0.9992 0.9931	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9884 0.9884 0.9857 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9932 0.9934 0.9946 2.4 0.9918	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9914 0.9916 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 0.9946 0.9946 0.	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767 2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817 2,1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857 2,2 0,9861 0,9864 0,9868 0,9871 0,9975 0,9878 0,9881 0,9884 0,9887 0,9890 2,3 0,9893 0,9992 0,9922 0,9925 0,9927 0,9929 0,9911 0,9913 0,9913 0,9913 0,9913 0,9934 0,9936 2,5 0,9938 0,9941 0,9943 0,9945 0,9946 0,9949 0,9951 0,9952 0,9957 0,9959 0,9960 0,9948 0,9949 0,9951 0,9952 0,9956 0,9957 0,9959 0,9950 0,9961 0,9962 0,9962 0,	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9936 2.5 0.9938 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 <td>1.9</td> <td>0.9713</td> <td>0.9719</td> <td>0.9726</td> <td>0.9732</td> <td>0.9738</td> <td>0.9744</td> <td>0.9750</td> <td>0.9756</td> <td>0.9761</td> <td>0.9767</td>	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2. 2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2. 3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2. 4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2. 5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2. 6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2. 7 0.9965 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9972 0.9973 0.9974 0.9975 0.9977 0.9977 0.9978 0.9979 0.9978 0.9979 0.9977 0.9978 0.9979 0.9978 0.9979 0.9979 0.9979	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9972 0.9973 0.9974 0.9974 0.9975 0.9977 0.9977 0.9978 0.9979 0.9978 0.9979 0.9978 0.9979 0.9978 0.9979 0.9978 0.9979 0.9978 0.9985 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9988 0.9988	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9985 0.9986 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9999 <td>2.2</td> <td>0.9861</td> <td>0.9864</td> <td>0.9868</td> <td>0.9871</td> <td>0.9875</td> <td>0.9878</td> <td>0.9881</td> <td>0.9884</td> <td>0.9887</td> <td>0.9890</td>	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9980 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9999 0.9990 0.9990 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9989 0.9999 0.9990 0.9993 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9989 0.9999 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9989 0.9999 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9989 0.9999 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993	2.8	0.9974	0.9975	0.9976	0.9977		0.9978	0.9979	0.9979	0.9980	
3. 1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3. 1 0. 9990 0. 9991 0. 9991 0. 9991 0. 9992 0. 9992 0. 9992 0. 9992 0. 9993 0. 9993	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
		0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
0. 2 0. 0000 0. 0000 0. 0001 0. 0001 0. 0001 0. 0001 0. 0000 0. 0000 0. 0000	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997		0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

上 α 分位数的定义:设 $X \sim N(0,1)$,在区间(0,1)中取一个实数 α ,当 $P(X > Z_{\alpha}) = \alpha$ 时,称 Z_{α} 为标准正态分布中的上 α 分位数。



【例题 2.3.7 基础题】一工厂生产的元件寿命X(单位:天)服从正态分布 $X \sim N(160, \sigma^2)$,如果要求 $P(120 < X < 200) \ge 0.8$,则允许的 σ 最大为多少?

答案: $X \sim N(160, \sigma^2)$ 可得出

$$\left(\frac{X - 160}{\sigma}\right) \sim N(0, 1)$$

$$P(120 < X < 200) = P\left(-\frac{40}{\sigma} < \frac{X - 160}{\sigma} < \frac{40}{\sigma}\right) \ge 0.8$$

学全团基础课:概率论与
$$\Phi\left(\frac{40}{\sigma}\right) \ge 0.9$$

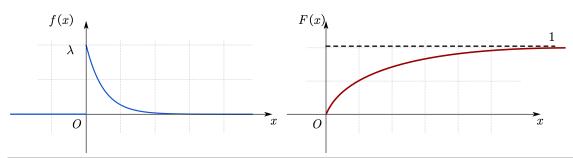
通过查表可知 Φ (1.28) ≈ 0.9, 所以有:

$$\frac{40}{\sigma} \ge 1.28$$

$$\sigma \le \frac{40}{1.28} = 31.25$$

所以允许 $\sigma \leq 31.25$ 。

2.3.4 指数分布Exp(λ)



	概率密度 PDF	概率分布 CDF	期望	方差
指数分布	$f(x) = \lambda \operatorname{e}^{-\lambda x} \ x \geq 0$	$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$	$\mu = rac{1}{\lambda}$	$\sigma^2 = rac{1}{\lambda^2}$

【例题 2.3.8 基础题】设某个家电产品的寿命记为T (单位: 年),服从 $\lambda = \frac{1}{3}$ 的指数分布。

- (1) 求该家电至少能够使用1年的概率。
- (2) 已知一台家电已经使用了3年, 求它能够至少再使用1年的概率。
- (1) 根据题意可知T的概率密度函数为:

$$f_T(x) = \frac{e^{-\frac{x}{3}}}{3} (x \ge 0)$$

而本题所求的概率为

$$P(T \ge 1) = \int_{1}^{+\infty} f_{T}(x) dx = -e^{-\frac{x}{3}} \Big|_{1}^{+\infty} = e^{-\frac{1}{3}}$$

(2) 本题所求概率为

$$P(T \ge 4 \mid T \ge 3) = \frac{P(T \ge 4)}{P(T \ge 3)} = \frac{\int_4^{+\infty} f_T(x) dx}{\int_3^{+\infty} f_T(x) dx} = e^{-\frac{1}{3}}$$

通过本题还可以认识到,指数分布的一个特点在于:无记忆性。

2.3.5 分布的可加性

对于:二项分布、泊松分布、正态分布、卡方分布(后续学习),两个独立同类型分布的随机变量X,Y,其求和后仍符合对应类型的分布:

- 若 $X \sim B(n,p), Y \sim B(m,p)$,则 $X + Y \sim B(n+m,p)$;(注意:p相同)
- 若 $X \sim P(\lambda_1), Y \sim P(\lambda_2)$,则 $X + Y \sim P(\lambda_1 + \lambda_2)$;
- 若 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,则 $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$;
- 若 $X \sim \chi^2(n), Y \sim \chi^2(m)$,则 $X + Y \sim \chi^2(n+m)$.

【注】上述结果对n个相互独立同分布的随机变量也成立.

2.4 一维随机变量的函数

2.4.1 离散变量的函数

【例题 2.4.1 基础题】设随机变量X的分布律为:

_ : 1,	/ = / _ / _ / _		1 11 / / 1		
X	-2	-1	0	1	3
p	1/5	1/6	1/5	1/15	11/30

求 $Y = X^2$ 的分布律。

答案:

Y	0	1	4	9	
p	1/5	7/30	1/5	11/30	

2.4.2 连续变量的函数

【例题 2.4.2 中等题】设随机变量X的概率密度函数如下:

$$f_{\scriptscriptstyle X}(x)\!=\!\left\{egin{array}{l} rac{x}{2} &, 0\leq x\leq 2 \ 0 &, others \end{array}
ight.$$

- (1) Y = 3X + 4的概率密度函数。
- (2) $Y = e^X$ 的概率密度函数。
- (3) $Y = (X 1)^2$ 的概率密度函数。

解:

(1) 第一步: 求Y的分布函数

$$F_Y(y) = P(Y \le y) = P(3X + 4 \le y) = P\left(X \le \frac{y - 4}{3}\right) = F_X\left(\frac{y - 4}{3}\right)$$

第二步: 求Y的概率密度函数

$$f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} = \frac{\mathrm{d}F_X\left(\frac{y-4}{3}\right)}{\mathrm{d}y} = f_X\left(\frac{y-4}{3}\right) \cdot \frac{1}{3}$$

第三步: 代入 f_X 中:

$$f_Y(y) = \begin{cases} \frac{y-4}{18} & , 4 \le y \le 10\\ 0 & , others \end{cases}$$

(2)

第一步: 求Y的分布函数

$$F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le \ln y) = F_X(\ln y)$$

第二步: 求Y的概率密度函数

$$f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} = \frac{\mathrm{d}F_X(\ln y)}{\mathrm{d}y} = f_X(\ln y) \cdot \frac{1}{y}$$

第三步: 代入 f_X 中:

$$f_Y(y) = \begin{cases} \frac{\ln y}{2} \cdot \frac{1}{y} & , 1 \le y \le e^2 \\ 0 & , others \end{cases}$$

(3) 第一步: 求Y的分布函数

$$F_Y(y) = P(Y \le y) = P[(X - 1)^2 \le y] = P[(1 - \sqrt{y}) \le X \le (1 + \sqrt{y})]$$
$$= F_X(1 + \sqrt{y}) - F_X(1 - \sqrt{y})$$

第二步: 求Y的概率密度函数

$$f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} = f_X\left(1 + \sqrt{y}\right) \cdot \frac{1}{2\sqrt{y}} + f_X\left(1 - \sqrt{y}\right) \cdot \frac{1}{2\sqrt{y}}$$

第三步: 代入 f_x 中:

$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} & , 0 \le y \le 1\\ 0 & , others \end{cases}$$

该例题中第(1)、(2)问可以用以下推论进行更快求解,而注意问题(3)不可以用该方法。

设随机变量X具有概率密度 $f_X(x)$, $-\infty < x < \infty$, 又设函数g(x)处处可导且恒有 g'(x) > 0(或恒有g'(x) < 0),则Y = g(X)是连续型随机变量,其概率密度为

$$f_Y(y) = \begin{cases} f_X[h(y)]|h'(y)|, & \alpha < y < \beta, \\ 0, & 其他, \end{cases}$$

其中h(y)是g(x)的反函数, $\alpha = \min\{g(-\infty), g(+\infty)\}$, $\beta = \max\{g(-\infty), g(+\infty)\}$ 。

【例题 2.4.3 拔高题】(2025 数学-/数学三 12 分)投保人的损失事件发生时,保险公司的赔付额Y与投保人的损失额X的关系为

$$Y = \begin{cases} 0, & X \le 100 \\ X - 100, & X > 100 \end{cases}$$

设损失事件发生时,投保人的损失额X的概率密度为

$$f(x) = egin{cases} rac{2 imes 100^2}{(100 + x)^3}, & x > 0, \ 0, & x \leqslant 0. \end{cases}$$

- (1) 求 $P\{Y>0\}$ 及EY;
- (2) 这种损失事件在一年内发生的次数记为N,保险公司在一年内就这种损失事 件产生的理赔次数记为M. 假设N 服从参数为 8 的泊松分布, 在 $N=n(n\geq 1)$ 的条 件下, M 服从二项分布B(n,p), 其中 $p=P\{Y>0\}$. 求M的概率分布。

答案: (1)
$$P{Y>0} = \frac{1}{4}; EY = 50$$
.

(2) 根据全概率公式,可知:

$$\begin{split} P\{M=m\} &= P\{N=m\} \cdot P\{M=m|N=m\} \\ &+ P\{N=m+1\} \cdot P\{M=m|N=m+1\} \\ &+ P\{N=m+2\} \cdot P\{M=m|N=m+2\} \\ &+ \cdots \\ &+ P\{N=\infty\} \cdot P\{M=m|N=\infty\} \\ &= \frac{8^m}{m!} \operatorname{e}^{-8} C_m^m \left(\frac{1}{4}\right)^m + \frac{8^{m+1}}{(m+1)!} \operatorname{e}^{-8} C_{m+1}^m \left(\frac{1}{4}\right)^m \left(\frac{3}{4}\right)^1 + \frac{8^{m+2}}{(m+2)!} \operatorname{e}^{-8} C_{m+1}^m \left(\frac{1}{4}\right)^m \left(\frac{3}{4}\right)^2 \\ &+ \frac{8^{m+3}}{(m+3)!} \operatorname{e}^{-8} C_{m+3}^m \left(\frac{1}{4}\right)^m \left(\frac{3}{4}\right)^3 + \cdots \frac{8^{m+\infty}}{(m+\infty)!} \operatorname{e}^{-8} C_{m+\infty}^m \left(\frac{1}{4}\right)^m \left(\frac{3}{4}\right)^\infty \\ &= \frac{\operatorname{e}^{-8}}{m!} 2^m \left(1 + \frac{6}{1!} + \frac{6}{2!} + \frac{6}{3!} + \cdots\right) \\ &= \frac{2^m}{m!} \operatorname{e}^{-2} \end{split}$$

三、二维随机变量

3.1 二维离散变量

联合分布律 / 联合分布函数 3.1.1

【例题 3.1.1 基础题】盒子里装有3只黑球、2只红球、2只白球,在其中任取4 只球。以X表示取到黑球的只数,以Y表示取到红球的只数。

- (1) 求X和Y的联合分布律。
- (2) $\Re P\{X > Y\}, P\{Y = 2X\}, P\{X + Y = 3\}, P\{X < 3 Y\}.$

解:

(1) 按古典概型计算. 自 7 只球中取 4 只, 共有 $C_7^4 = 35$ 种取法。在 4 只球中, 黑球有i只, 红球有j只(剩下4 - i - j只为白球)的取法数为

$$N\{X = i, Y = j\} = C_3^i C_2^j C_2^{4-i-j}$$

$$(i = 0,1,2,3; j = 0,1,2; i + j \le 4)$$

于是分布律为:

YX	0	1	2	3
0	0	0	3 35	2 35
1	0	6 35	$\frac{12}{35}$	2 35
2	$\frac{1}{35}$	6 35	3 35	0

$$P\{X > Y\} = P\{X = 2, Y = 0\} + P\{X = 2, Y = 1\} + P\{X = 3, Y = 0\}$$

$$+ P\{X = 3, Y = 1\} = \frac{19}{35}$$

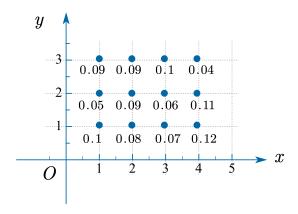
$$P\{Y = 2X\} = P\{X = 1, Y = 2\} = \frac{6}{35}$$

$$P\{X + Y = 3\} = P\{X = 1, Y = 2\} + P\{X = 2, Y = 1\} + P\{X = 3, Y = 0\} = \frac{20}{35}$$

$$P\{X < 3 - Y\} = P\{X = 0, Y = 2\} + P\{X = 1, Y = 1\} + P\{X = 2, Y = 0\} = \frac{10}{35}$$

3.1.2 边缘概率与条件概率

如果二维离散随机变量(X,Y)的联合分布律如下图所示:



而如果我们只关注X的取值情况,可以得出以下表格:

X	1	2	3	4
P	0.24	0.26	0.23	0.27

这便是"边缘分布律",即只考虑二维随机变量当中的单个变量的概率分布律。

而如果计算条件概率 $P\{Y=2 \mid X=3\}$,则可利用条件概率公式很方便地求解:

$$P{Y = 2 \mid X = 3} = \frac{P{Y = 2, X = 3}}{P{X = 3}} = \frac{0.06}{0.23} = \frac{6}{23}$$

这就是二维离散变量中的条件概率。

3.2 二维连续变量

3.2.1 联合概率密度与概率分布函数

二维连续随机变量(X,Y)的联合概率密度函数f(x,y):

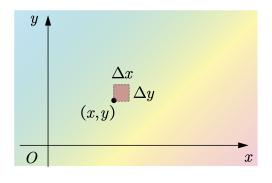
$$f(x,y) = \lim_{\substack{\Delta x \to 0^+ \\ \Delta y \to 0^+}} \frac{P(x \le X \le x + \Delta x, y \le Y \le y + \Delta y)}{\Delta x \cdot \Delta y}$$

二维连续随机变量(X,Y)的联合概率分布函数F(x,y):

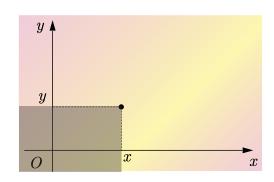
$$F(x, y) = P\{X \le x, Y \le y\}$$

概率密度与概率分布之间的关系:

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$
$$f(x,y) = \frac{\partial^{2} F(x,y)}{\partial x \partial y}$$



概率密度



概率分布

【例题 3.2.1 基础题】设随机变量(X,Y)的概率密度函数为

$$f(x,y) = \left\{egin{array}{ll} k \, \mathrm{e}^{-(2x+y)}, & x > 0\,, y > 0 \ 0\,, & others \end{array}
ight.$$

求:

- (1) 确定常数k.
- (2) $\bar{x}P\{X+Y<1\}$
- (3) 求分布函数F(x,y)

答室.

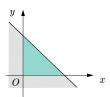
(1) 概率密度函数在整个区域的积分值应该为1,于是:

$$\iint_{x>0,y>0} k \, \mathrm{e}^{-(2x+y)} \mathrm{d}x \, \mathrm{d}y = k \! \int_0^{+\infty} \! \mathrm{d}x \! \int_0^{+\infty} \! \mathrm{e}^{-(2x+y)} \mathrm{d}y = k \! \int_0^{+\infty} \! \mathrm{e}^{-2x} \mathrm{d}x = \frac{k}{2}$$

由此得出:

$$k = 2$$

(2)



$$egin{split} P\{X+Y<1\} &= 2\int_0^1 \mathrm{e}^{-2x} \mathrm{d}x \int_0^{1-x} \mathrm{e}^{-y} \, \mathrm{d}y = 2\int_0^1 \mathrm{e}^{-2x} (1-\mathrm{e}^{x-1}) \, \mathrm{d}x \ &= 2\int_0^1 \mathrm{e}^{-2x} \mathrm{d}x - 2\int_0^1 \mathrm{e}^{-x-1} \, \mathrm{d}x = (1-\mathrm{e}^{-2}) - 2(\mathrm{e}^{-1}-\mathrm{e}^{-2}) = 1 - 2\,\mathrm{e}^{-1} + \mathrm{e}^{-2} \end{split}$$

(3)

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) \, \mathrm{d}u \, \mathrm{d}v = egin{cases} (1-\mathrm{e}^{-2x}) \, (1-\mathrm{e}^{-y}), & x > 0, y > 0 \ 0, & others \end{cases}$$

【例题 3.2.2 基础题】设随机变量(X,Y)的概率分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-x-y}, & x > 0, y > 0 \\ 0, & others \end{cases}$$

- (1) 求它的概率密度函数f(x,y)
- (2) $\bar{x}P\{X < 2\}$ $P\{Y < 4\}$

(1)

$$\frac{\partial}{\partial x}F(x,y) = \begin{cases} e^{-x} - e^{-x-y}, & x > 0, y > 0 \\ 0, & others \end{cases}$$

$$\frac{\partial^2}{\partial x \partial y}F(x,y) = \begin{cases} e^{-x-y}, & x > 0, y > 0 \\ 0, & others \end{cases}$$

$$f(x,y) = \begin{cases} e^{-x-y}, & x > 0, y > 0 \\ 0, & others \end{cases}$$

(2) 按照基本思路,

$$P\{X<2\} = \int_{-\infty}^{2} \mathrm{d}x \int_{-\infty}^{+\infty} f(x,y) \,\mathrm{d}y$$

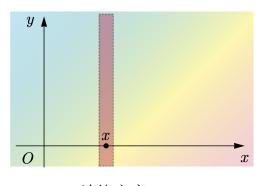
$$P{Y < 4} = \int_{-\infty}^{4} dy \int_{-\infty}^{+\infty} f(x,y) dx$$

但是如果有了概率分布函数F(x,y), 这意味着可以更方便求解:

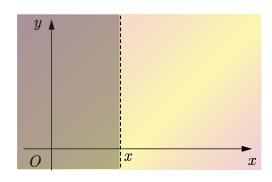
$$P{X < 2} = F(2, +\infty) = 1 - e^{-2}$$

$$P{Y < 4} = F(+\infty, 4) = 1 - e^{-4}$$

3.2.2 边缘密度、边缘分布



边缘密度



边缘分布

边缘概率密度函数 $f_X(x)$ 、 $f_Y(y)$:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

边缘概率分布函数 $F_X(x)$ 、 $F_Y(y)$:

$$F_X(x) = P\{X \le x\}$$

$$F_Y(y) = P\{Y \le y\}$$

彼此关联:

$$\frac{\mathrm{d}F_X(x)}{\mathrm{d}x} = f_X(x), \int_{-\infty}^x f_X(x) \mathrm{d}x = F_X(x)$$

$$\frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} = f_Y(y), \int_{-\infty}^y f_Y(y) \mathrm{d}y = F_Y(y)$$

【例题 3.2.3 基础题】设随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} k(6-x-y), & 0 < x < 2, \ 2 < y < 4 \\ 0, & others \end{cases}$$

求边缘分布函数 $F_X(x)$ 与 $F_Y(y)$, 求边缘密度函数 $f_X(x)$ 与 $f_Y(y)$ 。

解:概率密度函数在整个区域的积分值应该为1,于是:

$$\iint_{\substack{0 < x < 2 \\ 2 < y < 4}} k(6 - x - y) dx dy = k \int_{0}^{2} dx \int_{2}^{4} (6 - x - y) dy = k \int_{0}^{2} (6 - 2x) dx = 8k$$

由此得出:

$$k = \frac{1}{8}$$

求边缘分布函数: 当0 < x < 2时:

$$F_X(x) = \int_0^x \mathrm{d}x \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \int_0^x \mathrm{d}x \int_2^4 \frac{6 - x - y}{8} \, \mathrm{d}y$$

$$= \frac{1}{8} \int_0^x (6 - 2x) \, \mathrm{d}x = \frac{6x - x^2}{8}$$

当2 < y < 4时:

$$egin{split} F_Y(y) &= \int_2^y \mathrm{d}y \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \int_2^y \mathrm{d}y \int_0^2 rac{6-x-y}{8} \, \mathrm{d}x \ &= rac{1}{8} \int_2^y (10-2y) \, \mathrm{d}y = rac{-y^2 + 10y - 16}{8} \end{split}$$

由此得出结果:

$$F_X(x) = egin{cases} 0\,, x < 0 \ rac{6x - x^2}{8}, 0 \leq x \leq 2 & F_Y(y) = egin{cases} rac{0\,, y < 2}{-\,y^2 + 10y - 16} \ rac{8}{8}, 2 \leq y \leq 4 \ 1\,, y > 4 \end{cases}$$

边缘密度函数 $f_{X}(x)$ 与 $f_{Y}(y)$ 可以令上述两个独立分布函数各自求导即可得到:

$$f_X(x)\!=\!egin{cases} rac{3-x}{4}, & 0\!\leq\!x\!\leq\!2 \ 0, & others \end{cases} \quad f_Y(y)\!=\!egin{cases} rac{-y+5}{4}, & 2\!\leq\!y\!\leq\!4 \ 0, & others \end{cases}$$

【例题 3.2.4 基础题】二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y, & x^2 \le y \le 1\\ 0, & others \end{cases}$$

求边缘分布函数 $F_X(x)$ 与 $F_Y(y)$, 求边缘密度函数 $f_X(x)$ 与 $f_Y(y)$ 。

可以先求出概率密度函数 $f_X(x)$ 与 $f_Y(y)$

当 $-1 \le x \le 1$ 时:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \int_{x^2}^1 \frac{21}{4} x^2 y \, \mathrm{d}y = \frac{21}{8} x^2 (1 - x^4)$$
 $f_X(x) = \begin{cases} \frac{21}{8} x^2 (1 - x^4), & -1 \le x \le 1 \\ 0, & others \end{cases}$

当0 ≤ y ≤ 1时:

$$egin{split} f_{Y}(y) = & \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \int_{-\sqrt{y}}^{\sqrt{y}} rac{21}{4} x^2 y \, \mathrm{d}x = rac{7}{2} y^{rac{5}{2}} \ & \ f_{Y}(y) = egin{cases} rac{7}{2} y^{rac{5}{2}}, & 0 \leq y \leq 1 \ 0 & others \end{cases} \end{split}$$

而我们知道, 概率分布函数是概率密度函数的原函数, 所以积分可得:

$$F_X(x) = \int_{-\infty}^x f_X(x) \, \mathrm{d}x = \left\{ egin{array}{l} 0 \, , x < -1 \ rac{7}{8} x^3 - rac{3}{8} x^7 + rac{1}{2}, -1 \le x \le 1 \ 1 \, , x > 1 \end{array}
ight.$$

$$F_Y(y) = \int_{-\infty}^y f_Y(y) \mathrm{d}y = egin{cases} 0\,,y < 0 \ y^{rac{7}{2}}, \, 0 \leq y \leq 1 \ 1\,,y > 1 \end{cases}$$

【例题 3.2.5 基础题】设随机变量(X,Y)的概率分布函数为

$$F(x,y) = \left\{egin{aligned} 1 - \mathrm{e}^{-x} - \mathrm{e}^{-y} + \mathrm{e}^{-x-y}, & x > 0, y > 0 \\ 0, & others \end{aligned}
ight.$$

求边缘分布函数 $F_X(x)$ 与 $F_Y(y)$, 求边缘密度函数 $f_X(x)$ 与 $f_Y(y)$ 。

答案: 如果已知概率分布函数, 有 $F_X(x) = F(x, +\infty)$, $F_Y(y) = F(+\infty, y)$, 则得:

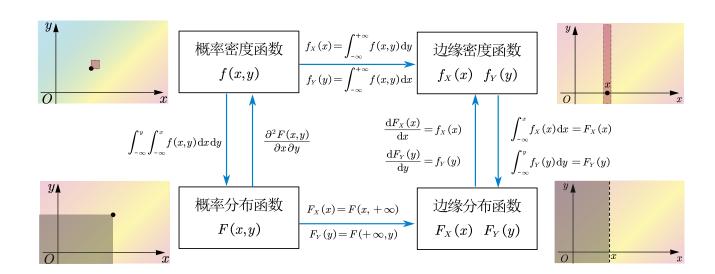
$$F_{\scriptscriptstyle X}(x)\!=\!\left\{egin{array}{ll} 1\!-\!{
m e}^{{\scriptscriptstyle -}x}, & x\!>\!0 \ 0, & others \end{array}
ight.$$

$$F_{_{Y}}(y)\!=\!\left\{egin{array}{ll} 1\!-\!{
m e}^{_{-}y}, & y\!>\!0 \ 0, & others \end{array}
ight.$$

对上述函数求导即可得到边缘密度:

$$f_{\scriptscriptstyle X}(x)\!=\!\left\{egin{array}{ll} {
m e}^{_{\scriptscriptstyle -x}}, & x\!>\!0 \ 0\,, & others \end{array}
ight.$$

$$f_{\scriptscriptstyle Y}\left(y
ight)\!=\!\left\{egin{array}{ll} \mathrm{e}^{_{\scriptscriptstyle -}y}, & y\!>\!0 \ 0\,, & others \end{array}
ight.$$



3.2.3 条件概率

【例题 3.2.6 基础题】二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} rac{21}{4}x^2y, & x^2 \leq y \leq 1 \\ 0, & others \end{cases}$$

- (1) 求条件概率密度 $f_{X|Y}(x \mid y)$,特别地,写出当 $Y = \frac{1}{2}$ 时X的条件概率密度.
- (2) 求条件概率密度 $f_{Y|X}(y|x)$,特别地,分别写出当 $X = \frac{1}{3}$ 时Y的条件概率密度.
- (3) 求条件概率 $P\left\{Y \ge \frac{3}{4} | X = \frac{1}{2}\right\}$

为求条件概率,我们通过之前的例题获得了该概率密度情况下的边缘概率密度:

$$f_{X}(x)\!=\!\left\{egin{array}{ll} rac{21}{8}x^{2}(1\!-\!x^{4}), & -1\!\leq\!x\!\leq\!1 \ 0, & others \end{array}
ight.$$

$$f_{\scriptscriptstyle Y}(y)\!=\!\left\{egin{array}{ll} rac{7}{2}y^{rac{5}{2}}, & 0\!\leq\!y\!\leq\!1 \ 0, & others \end{array}
ight.$$

(1) 当 $0 \le y \le 1$ 时:

$$f_{X\mid Y}(x\mid y) = rac{f(x,y)}{f_{Y}(y)} = egin{cases} rac{3}{2}x^{2}y^{-rac{3}{2}}, & -\sqrt{y} \leq x \leq \sqrt{y} \ 0, & others \end{cases}$$

当 $Y = \frac{1}{2}$ 时,代入 $y = \frac{1}{2}$ 即可得到:

$$f_{X\mid Y}igg(x\mid y=rac{1}{2}igg) = \left\{egin{array}{ll} 3\sqrt{2}\,x^2, & -rac{\sqrt{2}}{2} \leq x \leq rac{\sqrt{2}}{2} \ 0, & others \end{array}
ight.$$

(2) 当 $-1 \le x \le 1$ 时:

$$f_{Y|X}(y|x) = rac{f(x,y)}{f_X(x)} = egin{cases} rac{2y}{1-x^4}, & x^2 < y < 1 \\ 0, & others \end{cases}$$

当 $X = \frac{1}{3}$ 时,代入 $X = \frac{1}{3}$ 即可得到:

$$f_{Y \mid X} \Big(y \mid x = \frac{1}{3} \Big) = \left\{ egin{array}{l} rac{81}{40} y, & rac{1}{9} < y < 1 \\ 0, & others \end{array}
ight.$$

(3)

$$P\left\{Y \ge \frac{3}{4} | X = \frac{1}{2}\right\} = \frac{P\left\{Y \ge \frac{3}{4}, X = \frac{1}{2}\right\}}{P\left\{X = \frac{1}{2}\right\}} = \frac{\int_{\frac{3}{4}}^{+\infty} f\left(\frac{1}{2}, y\right) dy}{\int_{-\infty}^{+\infty} f\left(\frac{1}{2}, y\right) dy} = \frac{\int_{\frac{3}{4}}^{1} \frac{21}{16} y \, dy}{f_X\left(\frac{1}{2}\right)}$$
$$= \frac{\frac{21}{16} \times \frac{1}{2} \left(1 - \frac{9}{16}\right)}{\frac{21}{8} \times \frac{1}{4} \times \frac{15}{16}} = \frac{7}{15}$$

【例题 3.2.7 中等题】设随机变量 $X \sim N(0,1)$, 在X = x条件下随机变量 $Y \sim N(x,1)$, 请写出(X,Y)的联合概率密度函数。

答案: $X \sim N(0,1)$, 则对应X的边缘密度函数为:

$$f_{\scriptscriptstyle X} = rac{1}{\sqrt{2\pi}}\, {
m e}^{-rac{x^2}{2}}$$

$$f_{Y\mid X}(y\mid x) = rac{1}{\sqrt{2\pi}}e^{-(y-x)^2/2}$$

联合概率密度函数 $f_{X,Y}(x,y)$ 可以通过条件概率密度函数和边缘概率密度函数的乘积得到:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_{Y\mid X}(y\mid x)$$

将具体表达式代入:

$$f_{X,Y}(x,y) = \left(rac{1}{\sqrt{2\pi}}\,\mathrm{e}^{-rac{x^2}{2}}
ight) \cdot \left(rac{1}{\sqrt{2\pi}}\,\mathrm{e}^{-rac{(y-x)^2}{2}}
ight) = rac{1}{2\pi}\,\mathrm{e}^{-rac{x^2}{2}-rac{(y-x)^2}{2}}$$

3.3 相互独立性

在二维随机变量(X,Y)中,如果X和Y相互独立,则有以下等式成立:

$$F(x,y) = F_X(x) \cdot F_Y(y)$$

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

这两个式子也可以用来判断两个变量是否相互独立。

【例题 3.3.1 基础题】

1. 设随机变量(X,Y)具有分布函数

$$F(x,y) = \begin{cases} (1 - e^{-\alpha x})y, & x \ge 0, 0 \le y \le 1, \alpha > 0, \\ 1 - e^{-\alpha x}, & x \ge 0, y > 1, \\ 0, & \text{ i.e.} \end{cases}$$

证明X,Y相互独立。

2. 设随机变量(X,Y)具有分布律

$$P{X = x, Y = y} = p^2(1-p)^{x+y-2}, 0 均为正整数$$

问X,Y是否相互独立?

1. 解:

$$F_{\scriptscriptstyle X}(x)\!=\!F(x,+\infty)\!=\!\left\{egin{array}{ll} 1\!-\!{
m e}^{{\scriptscriptstyle -}ax}, & x\!\geq\!0 \ 0\,, & others \end{array}
ight.$$

$$F_{\scriptscriptstyle Y}(y) = F(+\infty,y) = \left\{egin{array}{ll} y, & 0 \leq y \leq 1 \ 1, & y > 1 \ 0, & others \end{array}
ight.$$

对于所有的x,y都有 $F(x,y) = F_X(x)F_Y(y)$,故X,Y相互独立。

2. 解:

$$P\{X = x\} = \sum_{y=1}^{\infty} p^2 (1-p)^{x+y-2} = p^2 (1-p)^{x-1} \sum_{y=1}^{\infty} (1-p)^{y-1}$$
$$= p^2 (1-p)^{x-1} \frac{1}{1-(1-p)} = p(1-p)^{x-1}$$
$$(x = 1, 2, \dots, \sharp + 0$$

同理

$$P{Y = y} = p(1-p)^{y-1}$$

 $(y = 1,2,\dots, \sharp + 0$

因为对于所有正整数x, y都有

$$P{X = x, Y = y} = P{X = x}P{Y = y}$$

故X,Y相互独立.

【例题 3.3.2 基础题】设X和Y是两个相互独立的随机变量,X在区间(0,1)上服从均匀分布,Y的概率密度为

$$f_Y(y) = \begin{cases} \frac{1}{2} e^{-y/2}, & y > 0\\ 0, & y \le 0 \end{cases}$$

- (1) 求X和Y的联合概率密度.
- (2) 设含有 α 的二次方程为 $\alpha^2 + 2X\alpha + Y = 0$, 试求 α 有实根的概率.

解: (1) 根据题意可得出, X的概率密度为:

$$f_{X}(x) = \left\{ egin{array}{ll} 1 \,, & 0 < x < 1 \ 0 \,, & others \end{array}
ight.$$

由于X和Y是相互独立的,可得:

$$f(x,y) = f_X(x) f_Y(y) = \left\{ egin{array}{ll} rac{1}{2} \mathrm{e}^{-rac{y}{2}}, & 0 < x < 1\,, y > 0 \ 0\,, & others \end{array}
ight.$$

(2) 为使该式有实根, 判别式为:

$$\Delta = 4X^2 - 4Y \ge 0$$

即要求:

$$\begin{split} X^2 &\geq Y \\ P\{X^2 \geqslant Y\} &= \iint_G f(x,y) \mathrm{d}x \, \mathrm{d}y = \int_0^1 \mathrm{d}x \int_0^{x^2} \frac{1}{2} \, \mathrm{e}^{-y/2} \, \mathrm{d}y \\ &= \int_0^1 \left(1 - \mathrm{e}^{-x^2/2}\right) \mathrm{d}x = 1 - \sqrt{2\pi} \left[\Phi(1) - \Phi(0)\right] \\ &= 0.1445 \end{split}$$

【例题 3.3.3 中等题】(2024 数学一 5分)设随机变量X,Y相互独立,且X服从正态分布N(0,2),Y服从正态分布N(-2,2). 若 $P\{2X+Y< a\}=P\{X>Y\}$,则a=

- A. $-2 \sqrt{10}$.
- B. $-2 + \sqrt{10}$
- C. $-2-\sqrt{6}$.
- D. $-2 + \sqrt{6}$.

答案: B

【例题 3.3.4 中等题】(2024 数学三 5 分)设随机变量X,Y相互独立,且

$$X \sim N(0,2), Y \sim N(-1,1)$$
, 记 $p_1 = P\{2X > Y\}, p_2 = P\{X - 2Y > 1\}$, 则

- A. $p_1 > p_2 > rac{1}{2}$.
- B. $p_2 > p_1 > \frac{1}{2}$.
- C. $p_1 < p_2 < \frac{1}{2}$
- D. $p_2 < p_1 < \frac{1}{2}$.

答案: B

3.4 常见的二维随机变量分布

二维均匀分布:设G是二维平面上的有界区域,其面积大小为A,二维连续随机变量有如下概率密度函数:

$$f(x,y) = \begin{cases} \frac{1}{A}, & (x,y) \in G \\ 0, & (x,y) \notin G \end{cases}$$

二维正态分布:二维连续型随机变量(X,Y)的联合概率密度函数为:

二维比忍分布: 二维连续型随机变量(X,Y)的联合概率名度函数为:
$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \mathrm{e}^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

$$x \in (-\infty, +\infty), y \in (-\infty, +\infty)$$

以上公式并非重点记忆内容。我们需要重点掌握二维正态分布的性质特征: 如果随机变量(X,Y)服从参数为 $\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho$ 的二维正态分布,记为 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$. 其中 $\mu_1=EX,\mu_2=EY,\sigma_1^2=DX,\sigma_2^2=DY,\rho$ 是X,Y的相 关系数, $\rho = \frac{\text{Cov}(X,Y)}{\sigma_{X,Y}\sigma_{X,Y}}$.

- ①X和Y各自的边缘分布都服从正态分布,即 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$; 注意, 反之不一定成立,X和Y各自服从正态分布,联合概率分布不一定是正态的。
- ②X和Y相互独立的充要条件是 $\rho = 0$.
- ③X和Y进行线性组合,得到的新变量 $Z = \alpha X + b Y$ 仍服从正态分布,
- $Z \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2).$

二维连续变量的函数 3.5

设(X,Y)是连续的二维随机变量,则如以下情况:

- (1) Z = X + Y
- (2) $Z = \frac{Y}{Y}$
- (3) Z = XY
- (4) $Z = \max\{X, Y\}$
- (5) $Z = \min\{X, Y\}$

这些情况下我们称Z是关于二维随机变量(X,Y)的函数。

我们如果需要求得它的概率分布函数 $F_{z}(z)$ 或概率密度函数 $f_{z}(z)$,遵循的步骤如 下:

- ①根据(X,Y)的分布范围,确定Z的取值范围;
- ②根据Z与(X,Y)之间的函数关系,在xOy平面中确定 $Z \le z$ 的范围D;
- ③在D范围内对f(X,Y)进行积分,从而获得 $P\{Z \leq z\}$,这便是 $F_z(z)$;
- $(4)F_7(z)$ 对z求导,即为 $f_7(z)$ 。

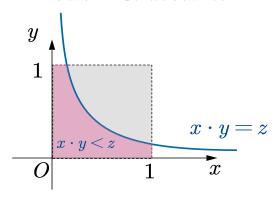
【例题 3.5.1 中等题】设随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} x+y, & 0 < x < 1, 0 < y < 1 \\ 0, & others \end{cases}$$

分别求(1)Z = XY(2)Z = X + Y的概率密度

答案:

(1)

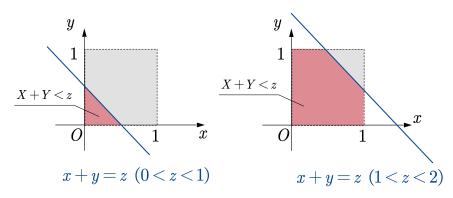


$$F_{Z}(z) = P\{Z \le z\} = \int_{0}^{z} dx \int_{0}^{1} (x+y) dy + \int_{z}^{1} dx \int_{0}^{\frac{z}{x}} (x+y) dy = 2z - z^{2}$$

通过对分布函数求导可得:

$$f_{Z}(z) \! = \! \left\{ egin{array}{ll} 2(1\!-\!z), & 0\!<\!z\!<\!1 \ 0, & others \end{array}
ight.$$

(2)



当0 < Z < 1时:

$$egin{split} F_Z(z) &= \int_0^z \mathrm{d}x \int_0^{z-x} f(x,y) \, \mathrm{d}y = \int_0^z \mathrm{d}x \int_0^{z-x} (x+y) \, \mathrm{d}y \ &= \int_0^z \Bigl(-rac{x^2}{2} + rac{z^2}{2} \Bigr) \mathrm{d}x = rac{z^3}{3} \end{split}$$

当1 < Z < 2时:

$$F_Z(z) = \int_0^{z-1} \mathrm{d}x \int_0^1 f(x,y) \, \mathrm{d}y \, + \int_{z-1}^1 \mathrm{d}x \int_0^{z-x} f(x,y) \, \mathrm{d}y = -\frac{1}{3} + z^2 - \frac{z^3}{3}$$

通过对分布函数求导可得:

$$f_{Z}(z)\!=\!\left\{egin{array}{l} z^{2},0\!<\!z\!<\!1\ 2z\!-\!z^{2},1\!\leq\!z\!<\!2\ 0\,,\!others \end{array}
ight.$$

【例题 3.5.2 中等题】设随机变量X,Y相互独立,它们的概率密度均为:

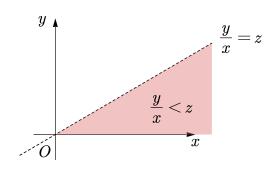
$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & others \end{cases}$$

求 $Z = \frac{Y}{Y}$ 的概率密度。

解:根据独立变量规律,可知(X,Y)联合分布概率密度为:

$$f(x,y) = \left\{ egin{array}{ll} \mathrm{e}^{-x-y}, & x > 0, y > 0 \ 0, & others \end{array}
ight.$$

 $Z = \frac{Y}{V}$,则 $0 \le Z \le +\infty$,可知它的概率分布函数如下:



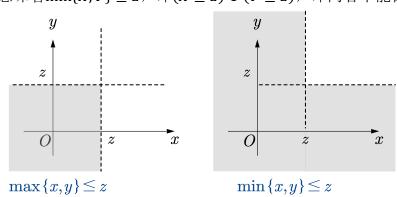
$$egin{aligned} F_Z(z) &= P\Big\{rac{Y}{X} \leq z\Big\} = \int_0^{+\infty} \mathrm{d}x \int_0^{xz} f(x,y) \,\mathrm{d}y \ &= \int_0^{+\infty} \mathrm{d}x \int_0^{xz} \mathrm{e}^{-x-y} \,\mathrm{d}y = rac{z}{1+z} \end{aligned}$$

令该函数对z求导数,即可得到概率密度函数:

$$f_{\scriptscriptstyle Z}(z) = rac{1}{\left(1+z
ight)^2}$$

关于 $Z = \max\{X,Y\}$, $Z = \min\{X,Y\}$ 的分布函数求解:

- (1) $Z \le z$ 意味着 $\max\{X,Y\} \le z$,即 $(X \le z) \cap (Y \le z)$,即两者都得比z小。
- (2) $Z \le z$ 意味着 $min\{X,Y\} \le z$, 即($X \le z$) \cup ($Y \le z$), 即两者不能都比z大。



而如果我们知道了(X,Y)的概率分布F(x,y),则可很简单地计算Z的概率分布:

- (1) $Z = \max\{X, Y\}, \ \bigcup F_Z(z) = F(z, z);$
- (2) $Z = \min\{X, Y\}, \quad \emptyset F_Z(z) = F(z, +\infty) + F(+\infty, z) F(z, z).$

更进一步,如果X,Y是相互独立的,可以进一步延伸出:

- (1) $Z = \max\{X, Y\}, \ \bigcup F_Z(z) = F_X(z) \cdot F_Y(z);$
- (2) $Z = \min\{X, Y\}, \quad \emptyset F_Z(z) = 1 [1 F_X(z)][1 F_Y(z)].$

如果有多个变量可以进行拓展:

(1)
$$Z = \max\{X_1, X_2, \dots, X_n\}, \quad \emptyset | F_Z(z) = F_{X_1}(z) \cdot F_{X_2}(z) \cdot \dots \cdot F_{X_n}(z);$$

(2)
$$Z = \min\{X_1, X_2, \dots, X_n\}$$
, \emptyset $F_Z(z) = 1 - [1 - F_{X_1}(z)][1 - F_{X_2}(z)] \dots [1 - F_{X_n}(z)][1 - F_{X_n}(z)][1 - F_{X_n}(z)] \dots [1 - F_{X_n}(z)][1 - F$

 $F_{X_n}(z)$

【例题 3.5.3 拔高题】(2024 数学一/数学三 5 分)设随机变量X,Y相互独立,

且均服从参数为 λ 的指数分布、令Z=|X-Y|,则下列随机变量中与Z同分布的是

- A. X+Y
- B. $\frac{X+Y}{2}$.
- C. 2X.
- D. X.

答案: D

四、随机变量的数字特征

4.1 期望与方差

期望值:

- 1000 元人民币和万分之一的概率获得 500 万, 你选择哪一个?
- 假定你每天乘公交车上班,公交车固定每 10 分钟一班,那么你平均每天要在公交车站等待多长时间?

方差:

● 设想两个同学的 100 米平均成绩都是 12 秒,需要选派一人参加运动会,倾向 于选择哪个?

7 (G17 //)					
学生 A	11.9	12.0	12.1	12.2	11.8
学生 B	10.0	13.0	14.0	11.0	12.0

● 假设你是应届毕业生,收到两个公司的录用: A 公司告诉你每年工资是 8 万; B 公司告诉你它整个公司的平均工资是每年 12 万。你选择哪个公司?

期望值E: 用于衡量随机变量的平均情况。

(1) 离散随机变量X, 期望值计算公式为:

$$E(X) = \sum_{i=1}^{n} X_i P(X = X_i)$$

(2) 一维连续随机变量X, 其概率密度为f(x), 期望值计算公式为:

$$\int_{-\infty}^{+\infty} f(x) \cdot x \mathrm{d}x$$

(3) 二维连续随机变量(X,Y), 其概率密度为f(x,y), 期望值计算公式为:

考研数学全面基础课: 概率论与数理统计

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \cdot x \, dx \, dy$$
$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \cdot y \, dx \, dy$$

期望值E的重要性质:

- (1) $E(CX) = C \cdot E(X)$, E(X + C) = E(X) + C, C是某个常数
- (2) E(X + Y) = E(X) + E(Y)
- (3) 如果X、Y是独立变量,则有 $E(XY) = E(X) \cdot E(Y)$

随机变量X存在一个函数g(X),如果需要算得g(X)的期望值,则只需g(X)乘以对应的概率(密度),累加求和(积分)即可。

比如我们有二维连续随机变量(X,Y),设Z = 2X - 3Y,它的期望值为:

$$E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \cdot (2x - 3y) \, dx \, dy$$

方差D: 用于衡量随机变量的分散程度, 方差越大数据越分散。

(1) 对于离散的随机变量X, 计算公式为:

$$D(X) = Var(X) = \sum_{k=1}^{\infty} [X_k - E(X)]^2 P(X = X_i)$$

(2) 一维连续随机变量X:

$$D(X) = \operatorname{Var}(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$

方差D的重要性质:

- (1) $D(CX) = C^2D(X), D(X + C) = D(X)$
- (2) $D(X + Y) = D(X) + D(Y) + 2E\{[X E(X)][Y E(Y)]\}$, 倘若两个变量独立,则(X + Y) = D(X) + D(Y)。
- ★ (3) 方差的计算可以转化为 $D(X) = E(X^2) [E(X)]^2$

标准差(均方差) σ : $\sigma = \sqrt{D(x)}$

【例题 4.1.1 中等题】证明: 对于离散随机变量X, $D(X) = E(X^2) - [E(X)]^2$ 证:

$$D(X) = \sum_{k=1}^{\infty} [X_k - E(X)]^2 P(X = X_i) = \sum_{k=1}^{\infty} \{X_k^2 - 2X_k E(X) + [E(X)]^2\} P(X = X_i)$$

$$= \sum_{k=1}^{\infty} X_k^2 P(X = X_i) - 2E(X) \sum_{k=1}^{\infty} X_k P(X = X_i) + [E(X)]^2 \sum_{k=1}^{\infty} P(X = X_i)$$

$$= E(X^2) - 2[E(X)]^2$$

【例题 4.1.2 基础题】计算以下的分布的期望与方差:

- (1)参数为p的两点分布
- (2) 二项分布X~b(n,p)
- (3) 均匀分布X~U(a,b)

(1) 随机变量X的分布律如下:

 Χ	0	1
P	1-p	p

则对应的期望值为:

$$E(X) = 0 \times (1 - p) + 1 \times p = p$$

方差为:

$$D(X) = (0-p)^{2}(1-p) + (1-p)^{2}p = p(1-p)$$

(2) 二项分布下的分布律如下:

$$P(X = k) = C_n^k p^k (1 - p)^{n - k} = \frac{n(n - 1) \cdot \dots \cdot (n - k + 1)}{k!} p^k (1 - p)^{n - k}$$

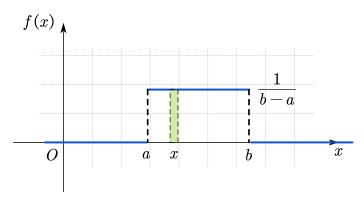
这样逐项地求出概率,再按照期望和方差的定义来求解,则显然过于复杂。我们可以换个视角来看待这个问题: 既然X服从参数为n,p的二项分布,意味着

$$X = X_1 + X_2 + X_3 + \dots + X_n$$

其中 X_i ($i = 1,2,\dots,n$)是相互独立的、概率为p的两点分布。

$$E(X) = E(X_1 + X_2 + X_3 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n) = np$$

$$D(X) = D(X_1 + X_2 + X_3 + \dots + X_n) = D(X_1) + D(X_2) + \dots + D(X_n) = np(1 - p)$$
(3)



$$E(x) = \int_{a}^{b} \frac{x}{b-a} dx = \frac{a+b}{2}$$

$$D(x) = \int_{a}^{b} \left(x - \frac{a+b}{2} \right)^{2} \cdot \frac{1}{b-a} dx = \frac{1}{3(b-a)} \left(x - \frac{a+b}{2} \right)^{3} \Big|_{a}^{b} = \frac{(b-a)^{2}}{12}$$

分布	期望	方差
二项分布X~b(n,p)	пр	np(1-p)
泊松分布Χ~π(λ)	λ	λ
均匀分布X~U(a,b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
正态分布 $X\sim N(\mu,\sigma^2)$	μ	σ^2
指数分布X~Exp(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

【例题 4.1.3 基础题】设随机变量X的概率密度为:

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

求以下随机变量的期望值: (1) Y = 2X, (2) $Z = e^{-2X}$

解:

(1) 根据期望计算公式:(以下积分过程采用的是分部积分法)

$$E(Y) = E(2X) = \int_{-\infty}^{+\infty} 2x f(x) dx = \int_{0}^{+\infty} 2x e^{-x} dx = \int_{0}^{+\infty} 2x d(-e^{-x})$$
$$= (-2xe^{-x} - 2e^{-x})|_{0}^{+\infty} = 2$$

(2)

$$E(Z) = E(e^{-2X}) = \int_{-\infty}^{+\infty} e^{-2x} f(x) dx = \int_{0}^{+\infty} e^{-3x} dx = \frac{1}{3}$$

【例题 4.1.4 基础题】设长方形的长 $X \sim U(0,2)$,已知长方形的周长为 20。求长方形面积A的数学期望和方差。

解:长方形的长为X,周长为20,所以它的面积A为

$$A = X(10 - X).$$

现在 $X \sim U(0,2)$, X的概率密度为:

$$f_{X}(x) = egin{cases} rac{1}{2}, & 0 < x < 2, \ 0, & others \end{cases}$$

所以

$$E(A) = E[X(10 - X)] = \int_0^2 x(10 - x) \cdot \frac{1}{2} dx = \left(\frac{5}{2}x^2 - \frac{1}{6}x^3\right)\Big|_0^2 = \frac{26}{3}$$

求方差可以有两种方法:

方法一:
$$D = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$

$$D = \int_0^2 \frac{1}{2} \left[x(10 - x) - \frac{26}{3} \right]^2 dx = \frac{964}{45}$$

方法二: $D = E(X^2) - [E(X)]^2$

$$E(A^2) = E[X^2(10 - X)^2] = \int_0^2 x^2(10 - x)^2 \cdot \frac{1}{2} dx = \frac{1448}{15}$$

$$D(A) = E(A^2) - [E(A)]^2 = \frac{1448}{15} - \left(\frac{26}{3}\right)^2 = \frac{964}{45}$$

【例题 4.1.5 基础题】二维离散随机变量(X,Y)的分布律如	11 14 11:
----------------------------------	-----------

- / // C	1 V WEI - VOJE		·
Y	1	2	3

**************************************	0.07.00.00.00.00.00.00.00.00.00.00.00.00	· /// 1 · O O SA = 300 1	0 7 1101
-1	0.2	0.1	0
0	0.1	0	0.3
1	0.1	0.1	0.1

求E(X)、E(Y)以及 $E\left(\frac{Y}{X}\right)$.

解:

$$E(X) = 1 \times 0.2 + 1 \times 0.1 + 1 \times 0.1 + 2 \times 0.1 + 2 \times 0.1 + 3 \times 0.3 + 3 \times 0.1 = 2$$

$$E(Y) = (-1) \times 0.2 + (-1) \times 0.1 + 0 \times 0.1 + 0 \times 0.3 + 1 \times 0.1 + 1 \times 0.1 + 1 \times 0.1$$

$$= 0$$

$$E\left(\frac{Y}{X}\right) = -1 \times 0.2 + \left(-\frac{1}{2}\right) \times 0.1 + 1 \times 0.1 + \frac{1}{2} \times 0.1 + \frac{1}{3} \times 0.1 = -\frac{1}{15}$$

【例题 4.1.6 基础题】设随机变量(X,Y)的概率密度函数为:

$$f(x,y) = \left\{egin{array}{l} rac{1}{y} \mathrm{e}^{-\left(y+rac{x}{y}
ight)}, & x > 0\,, y > 0 \ 0\,, & others \end{array}
ight.$$

求E(X)、E(Y)以及E(XY)

解:

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \cdot x \, \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{\infty} \int_{0}^{\infty} rac{x}{y} \, \mathrm{e}^{-\left(y + rac{x}{y}
ight)} \mathrm{d}x \, \mathrm{d}y \, = \int_{0}^{\infty} \mathrm{e}^{-y} y \, \mathrm{d}y \, = 1$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \cdot y \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(y + rac{x}{y}
ight)} \mathrm{d}x \, \mathrm{d}y = \int_{0}^{\infty} \mathrm{e}^{-y} y \, \mathrm{d}y = 1$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \cdot xy \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{\infty} \int_{0}^{\infty} x \, \mathrm{e}^{-\left(y + rac{x}{y}
ight)} \mathrm{d}x \, \mathrm{d}y \, = 2$$

【例题 4.1.7 基础题】(2021 数学-/数学=12 分) 在区间(0,2) 上随机取一点,将该区间分成两段,较短一段的长度记为X,较长一段的长度记为Y. 令 $Z=\frac{Y}{X}$

- (1) 求X的概率密度;
- (2) 求**Z**的概率密度;
- $(3) \ \ \vec{x} E\left(\frac{X}{Y}\right).$

答案: (1) X的概率密度为 $f_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$

(2)
$$Z$$
的概率密度为 $f_Z(z) = \begin{cases} rac{2}{(1+z)^2}, & z > 1, \\ 0, &$ 其他.

(3) $2\ln 2 - 1$.

【例题 4.1.8 中等题】(2023 数学一/数学三 5分)设随机变量X服从参数为1

的泊松分布,则E(|X-EX|)=

- A. $\frac{1}{e}$.
- B. $\frac{1}{2}$.
- C. $\frac{2}{e}$.
- D. 1.

答案: C

【例题 4.1.9 基础题】(2023 数学三 12 分)设随机变量X的概率密度为

$$f(x) = \frac{e^x}{(1 + e^x)^2}, -\infty < x < +\infty$$
, $rightharpoonup Y = e^X$.

- (1) 求X的分布函数;
- (2) 求Y的概率密度:
- (3) Y的期望是否存在?

答案: (1)
$$F(x) = 1 - \frac{1}{1 + e^x} (-\infty < x < +\infty)$$
 .

(2)
$$f_Y(y) = \begin{cases} \frac{1}{(1+y)^2}, & y > 0, \\ 0, &$$
其他.

(3) 不存在.

4.2 协方差

 $E\{[X - E(X)][Y - E(Y)]\}$ 被称为随机变量X, Y的协方差,记为Cov(c)。

- (1) Cov(aX, bY) = abCov(X, Y), 其中a, b是常数
- (2) $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- (3) Cov(X,Y) = Cov(Y,X)
- ★ (4) 协方差的公式还可以等价于: E(XY) E(X)E(Y)

协方差常出现于<u>方差公式</u>: $D(A \pm B) = D(A) + D(B) \pm 2Cov(A, B)$

基于协方差,还会产生一个概念:相关系数 ρ_{xy} $(\sigma(X) \cdot \sigma(Y) \neq 0)$

$$\rho_{xy} = \frac{\text{Cov}(X,Y)}{\sigma(X) \cdot \sigma(Y)} = \frac{E\{[X - E(X)][Y - E(Y)]\}}{\sqrt{D(X)}\sqrt{D(Y)}}$$

 ρ_{xy} 的取值介于[-1,1]之间,其越接近 0 说明两者线性相关性越低($\rho_{xy}=0$,则称两变量不相关),绝对值越大则越呈线性相关(-1则是负相关,+1是正相关)。

注意: 两变量不相关≠两变量独立,不相关不一定独立,但独立一定不相关。

【例题 4.2.1 基础题】设随机变量(X,Y)具有概率密度

$$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & \text{others.} \end{cases}$$

求

- (1) Cov(X,Y)
- (2) ρ_{XY}
- (3) D(X + Y).

解: (1) 求Cov(X,Y)有两种方法, 我们都尝试一下:

方法一: $Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$

首先需要求出E(X)与E(Y):

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy = \int_{0}^{2} dx \int_{0}^{2} \frac{x}{8} (x + y) dy = \frac{7}{6}$$

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy = \int_{0}^{2} dx \int_{0}^{2} \frac{y}{8} (x + y) dy = \frac{7}{6}$$

代入公式计算协方差

$$Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}\$$

$$= \int_0^2 dx \int_0^2 \left(x - \frac{7}{6}\right) \left(y - \frac{7}{6}\right) \frac{(x+y)}{8} dy = -\frac{1}{36}$$

方法二: Cov(X,Y) = E(XY) - E(X)E(Y)

只需要在算出E(X)与E(Y)的基础上继续运算E(XY):

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dx dy = \int_{0}^{2} dx \int_{0}^{2} \frac{xy}{8} (x+y) dy = \frac{4}{3}$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = -\frac{1}{36}$$

(2)
$$ho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
, 则需要求出 X 与 Y 的方差

$$E(X^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 f(x,y) dx dy = \int_{0}^{2} dx \int_{0}^{2} \frac{x^2}{8} (x+y) dy = \frac{5}{3}$$

同样计算得到 $E(Y^2) = \frac{5}{2}$,于是:

$$D(X) = E(X^{2}) - [E(X)]^{2} = \frac{5}{3} - \left(\frac{7}{6}\right)^{2} = \frac{11}{36}$$
$$D(Y) = E(Y^{2}) - [E(Y)]^{2} = \frac{5}{3} - \left(\frac{7}{6}\right)^{2} = \frac{11}{36}$$

$$\rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = -\frac{1}{11}$$

(3) 根据公式可知,

$$D(X+Y) = D(X) + D(Y) + 2\text{Cov}(X,Y) = \frac{5}{9}$$

【例题 4.2.2 基础题】随机变量 $X \sim U(-1,1), Y = X^2,$ 两者是否独立?是否相关?

答案: 首先可以给出结论,两者不独立。

接下来通过协方差判断两者是否相关:

$$E(X) = 0$$

$$E(Y) = E(X^{2}) = \int_{-1}^{1} x^{2} \cdot \frac{1}{2} dx = \frac{1}{3}$$

$$E(XY) = E(X^{3}) = \int_{-1}^{1} x^{3} \cdot \frac{1}{2} dx = 0$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

因此两者是不相关的。

【例题 4.2.3 基础题】(2021 数学一/数学三 5 分) 甲,乙两个盒子中各装有 2 个红球和 2 个白球,先从甲盒中任取一球,观察颜色后放人乙盒中,再从乙盒中任取一球. 令X,Y分别表示从甲盒和从乙盒中取到的红球个数,则X 与Y 的相关系数为_____.

答案: $\frac{1}{5}$

【例题 4.2.4 基础题】(2022 数学一5分)设随机变量 $X\sim U(0,3)$,随机变量Y

服从参数为2的泊松分布,且X与Y的协方差为-1,则D(2X-Y+1)=

- A. 1.
- B. 5.
- C. 9.
- D. 12

答案: C

【例题 4.2.5 基础题】(2022 数学三 5 分)设随机变量 $X \sim N(0,4)$,随机变量

$$Y \sim B\left(3, \frac{1}{3}\right)$$
,且 $X \ni Y$ 不相关,则 $D(X - 3Y + 1) =$

- A. 2.
- B. 4.

C. 6.

D. 10.

答案: D

【例题 4.2.6 拔高题】(2022 数学-5分)设随机变量 $X \sim N(0,1)$, 在X = x条

件下随机变量 $Y \sim N(x,1)$,则X 与 Y的相关系数为

A.
$$\frac{1}{4}$$
. B. $\frac{1}{2}$ C. $\frac{\sqrt{3}}{3}$. D. $\frac{\sqrt{2}}{2}$.

答案: D

【例题 4.2.7 中等题】(2022 数学三 5 分)设二维随机变量(X,Y)的概率分布为

X	0	1	2
-1	0.1	0.1	b
1	а	0.1	0.1

若事件 $\{\max\{X,Y\}=2\}$ 与事件 $\{\min\{X,Y\}=1\}$ 相互独立,则Cov(X,Y)=

A. -0.6.

B. -0.36.

C. 0

D. 0.48

答案: B

【例题 4.2.8 基础题】(2023 数学三 5 分)设随机变量X与Y相互独立,且

 $X \sim B(1,p), Y \sim B(2,p), p \in (0,1)$,则X + Y = X - Y的相关系数为_____

答案: $-\frac{1}{3}$

【例题 4.2.9 基础题】(2023 数学-12分)设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} rac{2}{\pi}(x^2 + y^2), & x^2 + y^2 \leq 1, \\ 0, & \sharp \text{ th.} \end{cases}$$

- (1) 求X与Y的协方差;
- (2) X与Y是否相互独立?
- (3) 求 $Z = X^2 + Y^2$ 的概率密度.

答案: (1) 0 (2) 不相互独立 (3) $f_z(z) = \begin{cases} 2z, & 0 < z < 1, \\ 0, &$ 其他.

【例题 4.2.10 中等题】(2024 数学一 5 分)设随机变量X的概率密度为

$$f(x) = \begin{cases} 2(1-x), & 0 < x < 1 \\ 0, &$$
 其他 \end{cases} , 在 $X = x(0 < x < 1)$ 条件下,随机变量 Y 服从其他区

间(x,1)上的均匀分布,则Cov(X,Y)=

- A. $-\frac{1}{36}$.
- B. $-\frac{1}{72}$.
- C. $\frac{1}{72}$.
- D. $\frac{1}{36}$.

答案: D

【例题 4.2.11 中等题】(2025 数学一 5 分)设二维随机变量(X,Y)服从正态分布 $N(0,0;1,1;\rho)$,其中 $\rho \in (-1,1)$. 若 a,b 为满足 $a^2+b^2=1$ 的任意实数,则 D(aX+bY)的最大值为

- A. 1.
- B. 2.
- C. $1 + |\rho|$.
- D. $1 + \rho^2$.

答案: C

【例题 4.2.12 基础题】(2025 数学三 5 分)设随机变量X 服从正态分布 N(-1,1),Y 服从正态分布 N(1,2),若X 与X + 2Y 不相关,则X 与X — Y 的相关系数 为

- A. $\frac{1}{3}$.
- B. $\frac{1}{2}$.
- C. $\frac{2}{3}$.
- D. $\frac{3}{4}$.

答案: D

4.3 随机变量的矩

对于一维随机变量X,称 $E(X^k)(k=1,2,\cdots)$ 为X的k阶原点矩;称 $E(X-EX)^k(k=2,3,\cdots)$ 为X的k阶中心矩。数学期望EX是X的一阶原点矩,方差DX是X的二阶中心矩。

设(X,Y)是二维随机变量:如果 $E(X^kY^l)$ 存在,则称 $E(X^kY^l)(k,l=1,2,\cdots)$ 为X与Y的k+l阶混合原点矩;称 $E[(X-EX)^k(Y-EY)^l](k,l=1,2,\cdots)$ 为X与Y的k+l阶混合中心矩。从上述定义看出:,协方差Cov(X,Y)是X与Y的混合二阶中心矩.

【例题 4.3.1 基础题】(2024 数学三 5 分)设随机变量X的概率密度为

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1, \\ 0, & \text{ 其他,} \end{cases}$$
 则 X 的 三 阶 中 心 矩 $E(X - EX)^3 =$

- A. $-\frac{1}{32}$.
- B. 0.
- C. $\frac{1}{16}$.
- D. $\frac{1}{2}$.

答案: B

五、大数定理与中心极限定理

5.1 切比雪夫不等式

随机变量X的期望为EX,方差为DX,对于任意给定的 $\epsilon > 0$,总有:

$$P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$$

或

$$P\{|X - EX| < \epsilon\} \ge 1 - \frac{DX}{\epsilon^2}$$

【例题 5.1.1 基础题】设随机变量X的均值 $\mu = 50$,标准差 $\sigma = 8$ 。利用切比雪夫不等式估计 $P(|X - 50| \ge 16)$ 的上界。

答案:根据切比雪夫不等式:

$$P\{|X - 50| \ge 16\} \le \frac{64}{256} = 0.25$$

上界为 0.25.

【例题 5.1.2 基础题】某班级 100 名学生的考试成绩平均分为 75 分,方差为 64。 使用切比雪夫不等式,估计成绩在[59,91]区间外的学生人数的上限。

答案:设学生成绩为X,成绩在[59,91]区间外意味着|X-75|>16,则根据切比雪

夫不等式:

$$P\{|X - 75| > 16\} < \frac{64}{16^2} = 0.25$$

学生人数为 100 人,对应概率 0.25 即 25 人,上限为 25 人。

【例题 5.1.3 基础题】某随机试验中,随机变量X的均值为 100,方差为 400。使用切比雪夫不等式估计 $P(70 \le X \le 130)$ 的下界。

答案:根据切比雪夫不等式:

$$P(70 \le X \le 130) = P\{|X - 100| \le 30\} \ge 1 - \frac{400}{30^2} = \frac{5}{9}$$

下界为 $\frac{5}{9}$.

【例题 5.1.4 基础题】对于均值 $\mu=20$,标准差 $\sigma=4$ 的随机变量X,利用切比雪夫不等式,求解使得 $P(|X-20|<\delta)\geq 0.96$ 成立的最小 δ 值。

答案:根据切比雪夫不等式:

$$P(|X-20|<\delta)\geq 1-\frac{16}{\epsilon^2}$$

【例题 5.1.5 中等题】(2022 数学一5分)设随机变量 X_1, X_2, \dots, X_n 独立同分布,

且 X_1 的 4 阶矩存在. 记 $\mu_k = E(X_1^k)(k=1,2,3,4)$,则由切比雪夫不等式,对任意 $\varepsilon > 0$,

有
$$P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\mu_{2}\right|\geqslant\varepsilon\right\}$$

A.
$$\frac{\mu_4 - \mu_2^2}{n\varepsilon^2}.$$

B.
$$\frac{\mu_4 - \mu_2^2}{\sqrt{n} \, \varepsilon^2}$$

C.
$$\frac{\mu_2-\mu_1^2}{n\varepsilon^2}$$
.

$$D. \frac{\mu_2 - \mu_1^2}{\sqrt{n} \, \varepsilon^2}.$$

答案: A

解析: 设
$$Y = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$
 为一个随机变量。

5.2 大数定律

大数定理: 在大量重复试验中,样本平均数会趋近于理论期望值。换句话说,当试验次数足够多时,实验结果的平均值会接近预期的长期平均值。

	(1) 随 机 变 量	
	$X_1, X_2, \cdots, X_n, \cdots$ 相互独	
切比	<u> </u>	则对任意给定的 $\varepsilon > 0$,都有
雪夫	(2) 数学期望 E X _i 和方差	
大 数 定律	$m{D}X_i$ 都存在;	$\left \lim_{n o\infty}oldsymbol{P}\left\{\left rac{1}{n}\sum_{i=1}^nX_i-rac{1}{n}\sum_{i=1}^noldsymbol{E}X_i ight $
	(3) 方差有公共上界,即	
	$DX_i\!\leqslant\!c,i\!=\!1,2,\cdots$,	
	随机变量 X_n 服从参数为 n	
伯努	$\begin{bmatrix} n & p & n & c & c & c & c & c & c & c & c & c$	对任意 $arepsilon>0$,都有
利大数定	$X_n \sim B(n,p)$, μ_n 是 n 次试	
律	验中事件A发生的次数	$\lim_{n\to\infty} P\left\{ \left \frac{\mu_n}{n} - p \right < \varepsilon \right\} = 1$
	$(n\!=\!1,2,\cdots)$ 。	
辛钦	随机变量 $X_1,X_2,\cdots,X_n,\cdots$	则对任意 $\varepsilon > 0$,都有
大 数 定律	相互独立同分布, μ为它们	$\lim_{n o\infty}Pigg\{igg rac{1}{n}\sum_{i=1}^nX_i-\muigg $
	共同的期望。	$n \to \infty$ $\left(\mid n \mid \frac{1}{i-1} \mid$

切比雪夫说:"只要方差有限,大量重复试验的平均值会接近期望值"伯努利说:"投硬币这类事情,大量地实验结果里,频率会接近概率"辛钦说:"同一类型的随机变量,大量样本的平均值会接近期望值"

【例题 5.2.1 基础题】假设随机变量 X_1, X_2, \cdots 相互独立且服从同参数 λ 的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是

- (A) $X_1, X_2, \cdots, X_n, \cdots$
- (B) $X_1 + 1, X_2 + 2, \dots, X_n + n, \dots$
- (C) $X_1, 2X_2, \cdots, nX_n, \cdots$
- (D) $X_1, \frac{1}{2}X_2, \cdots, \frac{1}{n}X_n, \cdots$

切比雪夫大数定律的条件有三个:

①随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立;②数学期望 $\mathbf{E}X_i$ 和方差 $\mathbf{D}X_i$ 都存在;③方

差有公共上界, 即 $DX_i \leq c, i=1,2,\cdots$ 。

四个选项均可满足前两者,而第三个条件中:对于

(A):
$$DX_n = \lambda < \lambda + 1$$
;

(B):
$$D(X_n + n) = DX_n = \lambda < \lambda + 1$$
;

$$(C)$$
 $\mathbf{D}(nX_n) = n^2 \mathbf{D}X_n = n^2 \lambda$ 没有公共上界;

(D):
$$\boldsymbol{D}\left(\frac{X_n}{n}\right) = \frac{1}{n^2}\lambda < \lambda + 1$$
.

【例题 5.2.2 基础题】(2022 数学三 5分)设随机变量序列 $X_1, X_2, \cdots, X_n, \cdots$ 独立

同分布,且 X_1 的概率密度为 $f(x) = \begin{cases} 1 - |x|, & |x| < 1, \\ 0, & \text{其他,} \end{cases}$ 则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^n X_i^2$ 依概

率收敛于

- A. $\frac{1}{8}$.
- B. $\frac{1}{6}$.
- C. $\frac{1}{3}$.
- D. $\frac{1}{2}$.

答案: B

5.3 中心极限定理

中心极限定理: n个随机变量 $X_1, X_2, X_3, \cdots X_n$ (n充分大),它们相互独立且服从同一种分布规律(独立同分布),期望值为 μ ,方差为D,有

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{nD}} \sim N(0,1)$$
或
$$\sum_{i=1}^{n} X_i \sim N(n\mu, nD)$$

$$\frac{\overline{X} - \mu}{\sqrt{D/n}} \sim N(0,1)$$
 或 $\overline{X} \sim N\left(\mu, \frac{D}{n}\right)$

【例题 5.3.1 基础题】某电器元件的寿命服从均值为 100h 的指数分布,随机抽取 16只(它们的寿命相互独立),求它们寿命总和大于 1920h 的概率。

解:

方法一: 以T代表 16 只元件寿命的总和,根据中心极限定理,可得如下分布情况:

 $\frac{T-16\times100}{\sqrt{16\times100^2}}$ ~N(0,1)

则有:

$$P\{T \ge 1920\} = P\left\{\frac{T - 16 \times 100}{\sqrt{16 \times 100^2}} \ge 0.8\right\} = 1 - \Phi(0.8) = 0.2119$$

方法二:以 \overline{X} 代表 16 只元件寿命的平均值,总寿命大于 1920h 意味着平均值大于 120h,根据中心极限定理,可得如下分布情况:

$$\frac{\overline{X} - 100}{\sqrt{100^2/16}} \sim N(0,1)$$

$$P\{\overline{X} \ge 120\} = P\left\{\frac{\overline{X} - 100}{\sqrt{100^2/16}} \ge 0.8\right\} = 1 - \Phi(0.8) = 0.211$$

六、 数理统计基本概念

从总体中抽出n个独立同分布的个体 $X_1, X_2, \cdots X_n$,记为样本(样本容量为n)。 样本均值:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

样本标准差:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

样本k阶原点矩:

$$A_k = rac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \, \cdots$$

样本k阶中心矩:

$$B_k = rac{1}{n} \sum_{i=1}^n \left(X_i - ar{X}
ight)^k, k = 2, 3, \, \cdots.$$

经验分布函数:设 X_1, X_2, \dots, X_n 是来自总体X的一个样本,将样本观测值按从小

到大的顺序排列为 $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ 。 经验分布函数 $F_n(x)$ 定义为:

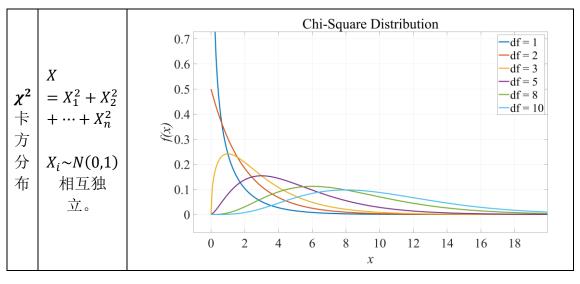
$$F_n(x) = \left\{ egin{array}{ll} 0\,, & x < x_{(1)} \ rac{k}{n}, & x_{(k)} \leq x < x_{(k+1)}, k = 1\,, 2\,, \cdots, n-1 \ 1\,, & x \geq x_{(n)} \end{array}
ight.$$

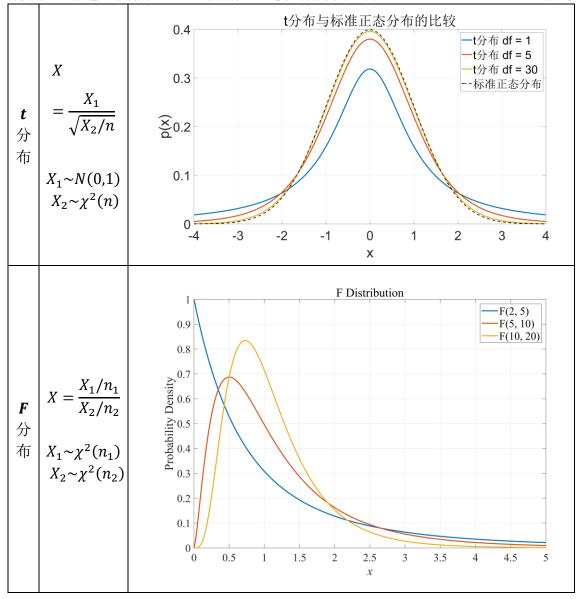
【例题 5.3.1 拔高题】(2025 数学三 5 分)设总体X的分布函数为 $F(x), X_1, X_2, \cdots, X_n$ 为来自总体X的简单随机样本,样本的经验分布函数为 $F_n(x)$.对于给定的 $x(0 < F(x) < 1), D(F_n(x)) =$

- A. F(x)[1-F(x)].
- B. $[F(x)]^2$.
- C. $\frac{1}{n}F(x)[1-F(x)]$.
- D. $\frac{1}{n}[F(x)]^2$.

答案: C

6.1 三大抽样分布





【例题 6.1.1 基础题】

- 1. 设样本 X_1, X_2, \cdots, X_6 来自总体 $N(0,1), Y = C(X_1 + X_2 + X_3)^2 + C(X_4 + X_5 + X_6)^2$ 、试确定常数C使Y服从 χ^2 分布.
- 2. 设样本 X_1, X_2, \cdots, X_5 来自总体 $N(0,1), Y = \frac{C(X_1 + X_2)}{(X_3^2 + X_4^2 + X_5^2)^{1/2}}$, 试确定常数C使Y服从t分布.
- 3. 已知总体 $X \sim t(n)$, 求证 $X^2 \sim F(1,n)$.

解:

1. 因 X_1, X_2, \cdots, X_6 是总体N(0,1)的样本,根据题目特点,可以将 $(X_1 + X_2 + X_3)$ 和 $(X_4 + X_5 + X_6)$ 各看成一个整体,则有

$$X_1 + X_2 + X_3 \sim N(0,3), X_4 + X_5 + X_6 \sim N(0,3)$$

且两者相互独立. 因此

$$\frac{X_1 + X_2 + X_3}{\sqrt{3}} \sim N(0,1), \quad \frac{X_1 + X_5 + X_6}{\sqrt{3}} \sim N(0,1),$$

按 χ^2 分布的定义

$$\frac{(X_1+X_2+X_3)^2}{3}+\frac{(X_4+X_5+X_6)^2}{3}\sim\chi^2(2),$$

$$\mathbb{P}Y \sim \chi^2(2)$$
, $C = \frac{1}{3}$.

2. 因 X_1, X_2, \dots, X_5 是总体N(0,1)的样本,故 $X_1 + X_2 \sim N(0,2)$,即有

$$\frac{X_1 + X_2}{\sqrt{2}} \sim N(0,1)$$

而

$$X_3^2 + X_4^2 + X_5^2 \sim \chi^2(3)$$
.

于是

$$\frac{(X_1 + X_2)/\sqrt{2}}{\sqrt{(X_3^2 + X_4^2 + X_5^2)/3}} = \sqrt{\frac{3}{2}} \frac{X_1 + X_2}{(X_3^2 + X_4^2 + X_5^2)^{1/2}} \sim t(3)$$

因此所求的常数 $C = \sqrt{\frac{3}{2}}$.

3. 按定义总体 $X \sim t(n)$, 故X可表示成

$$X = \frac{Z}{\sqrt{Y/n}}$$

其中, $Y \sim \chi^2(n)$, $Z \sim N(0,1)$ 且Z = Y相互独立, 从而

$$X^2 = \frac{Z^2}{Y/n}$$

由于 $Z\sim N(0,1)$, $Z^2\sim \chi^2(1)$,上式右端分子 $Z^2\sim \chi^2(1)$,分母中 $Y\sim \chi^2(n)$,又由Z与Y相互独立,知 Z^2 与Y相互独立.按F分布的定义得

$$X^2 \sim F(1, n)$$

【例题 6.1.2 基础题】设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的简单随机样本,

记 $Y = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$, 其中a,b为常数. 已知 $Y \sim \chi^2(n)$, 则

- (A) n 必为 2.
- (B) n 必为 4.
- (C) n 为 1 或 2。
- (D) n为2或4。

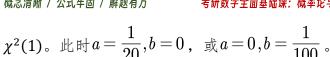
答案:

$$X_1 - 2X_2 \sim N(0, 20), 3X_3 - 4X_4 \sim N(0, 100)$$
 , 故

$$rac{X_1-2X_2}{\sqrt{20}}\sim N(0,1), rac{3X_3-4X_4}{10}\sim N(0,1)$$
 。

情形一:
$$Y = \left(\frac{X_1 - 2X_2}{\sqrt{20}}\right)^2 + \left(\frac{3X_3 - 4X_4}{10}\right)^2$$
,属于 χ^2 (2),此时 $a = \frac{1}{20}$, $b = \frac{1}{100}$;

情形二:
$$a$$
或 b 中有一者为 0 ,则 $Y = \left(\frac{X_1 - 2X_2}{\sqrt{20}}\right)^2$ 或 $Y = \left(\frac{3X_3 - 4X_4}{10}\right)^2$,属于



应选(C).

【例题 6.1.3 中等题】(2023 数学一/数学三 5分)设 X_1, X_2, \cdots, X_n 为来自总体

 $N(\mu_1,\sigma^2)$ 的简单随机样本, Y_1,Y_2,\cdots,Y_m 为来自总体 $N(\mu_2,2\sigma^2)$ 的简单随机样本, 且

两样本相互独立, 记
$$\bar{X}=rac{1}{n}\sum_{i=1}^{n}X_{i}$$
, $\bar{Y}=rac{1}{m}\sum_{i=1}^{m}Y_{i}$, $S_{1}^{2}=rac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\bar{X}
ight)^{2}$,

$$S_2^2=rac{1}{m-1}\sum_{i=1}^nig(Y_i-ar{Y}ig)^2$$
,则

A.
$$\frac{S_1^2}{S_2^2} \sim F(n,m)$$
.

B.
$$\frac{S_1^2}{S_2^2} \sim F(n-1, m-1)$$
.

C.
$$\frac{2S_1^2}{S_2^2} \sim F(n,m)$$
.

D.
$$\frac{2S_1^2}{S_2^2} \sim F(n-1, m-1)$$
.

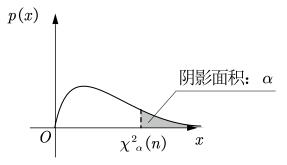
答案: D

分位数:对于遵循某个分布的随机变量X,给定一个参数 $\alpha(0 < \alpha < 1)$,如果存 在一个值 X_0 满足:

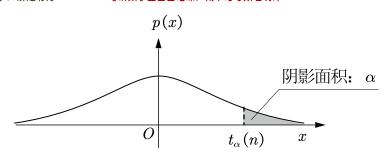
$$P\{X > X_0\} = \alpha$$

则称 X_0 为该分布的上 α 分位点。

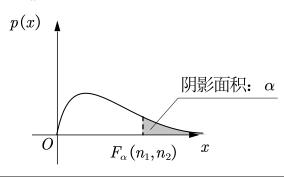
卡方分布的上 α 分位点记为 $\chi^2_{\alpha}(n)$:



t分布的上 α 分位点记为 $t_{\alpha}(n)$:



F分布的上α分位点记为 $F_{\alpha}(n_1, n_2)$:



6.2 样本均值与样本方差的分布

【单个正态总体】设 $X\sim N(\mu,\sigma^2), X_1, X_2, \cdots, X_n$ 是来自总体X的简单随机样

本,
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
与 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 分别为相应的样本均值和样本方

差.则

(1) 样本均值的分布:

$$rac{ar{X} - \mu}{\sigma / \sqrt{n}} = rac{\sqrt{n} \left(ar{X} - \mu
ight)}{\sigma} \sim N(0, 1)$$

$$rac{ar{X}-\mu}{S/\sqrt{n}} = rac{\sqrt{n}\left(ar{X}-\mu
ight)}{S} \sim t\left(n-1
ight)$$

(2) 样本方差的分布:

$$rac{1}{\sigma^2}\sum_{i=1}^n (X_i-\mu)^{\ 2} \sim \chi^2(n)$$

$$rac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(rac{X_i - ar{X}}{\sigma}
ight)^2 \sim \chi^2(n-1)$$

【双正态总体】考纲有所要求,但往年几乎不做考查,建议后期掌握公式即可。

七、参数估计与假设检验

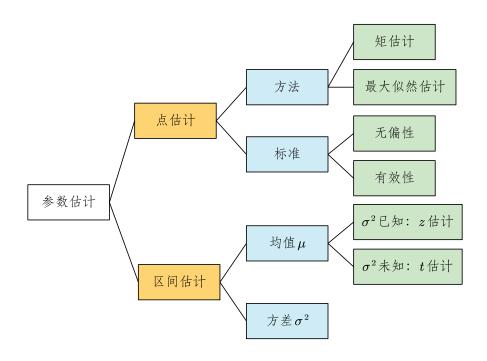
例一: 假设你想了解一所大学的学生英语水平, 你随机调查了这个学校 100 位学

生的四级考试成绩,发现他们的平均分为 455 分,而样本方差为 200。请你估计全校学生的四级考试平均成绩是多少?

例二:假设你正在点外卖,A店外卖的评分(满分5分)为4.8,但是只有5条评价;B店外卖的评分为4.7,但是有100条评价。你会倾向于选择哪一家?请你估计这两家店实际上真实评分应该所处的范围各是多少?

我们需要用有限的样本数,来估算总体的状况。具体来说就是估计总体的实际平均值(有时候也估计总体的方差),而这里的"估计"又分为两类:

- (1) 估算实际平均值(例一);
- (2) 估算实际平均值会在哪个范围内(例二)。 前者我们称之为"点估计",后者则是"区间估计"。



7.1 点估计: 矩估计 / 最大似然估计

矩估计:样本矩与总体矩相等。

第一步:如果要估计n个参数,需要计算**总体**以及**样本**中的前n阶原点矩;

第二步:样本矩=总体矩,得到n个方程,可解出n个参数的估计值;

最大似然估计:让参数取"最有可能"的值。

第一步:按照样本取值,写出对应"取得该值的概率",即样本的似然函数;

第二步: 令似然函数取得最大值, 求得此时对应的参数值作为估计值。

【例题 7.1.1 基础题】设离散随机变量X具有以下分布律:

X	1	2	3	
p	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$	

其中 $\theta \in (0,1)$ 为未知参数,已知三个样本值 $X_1 = 1, X_2 = 2, X_3 = 1$,请求出参数 θ 的 矩估计值和最大似然估计值。

解:【矩估计】

$$\mu = \theta^2 + 2 \times 2\theta(1 - \theta) + 3 \times (1 - \theta)^2 = 3 - 2\theta.$$

解得
$$\theta = \frac{1}{3}(3 - \mu)$$
, 故得 θ 的矩估计值为

 $\hat{\theta} = \frac{1}{2}(3 - \bar{x}) = \frac{1}{2}(3 - \frac{4}{3}) = \frac{5}{6}$

【最大似然估计】

由给定的样本值,得似然函数为

$$L = \prod_{i=1}^{3} P\{X_i = x_i\} = P\{X_1 = 1\}P\{X_2 = 2\}P\{X_3 = 1\} = \theta^2 \cdot 2\theta(1 - \theta) \cdot \theta^2$$
$$= 2\theta^5(1 - \theta)$$

令

$$\frac{\mathrm{d}L}{\mathrm{d}\theta} = 10\theta^4 - 12\theta^5 = 0$$

得θ的最大似然估计值为 $\hat{\theta} = \frac{5}{6}$.

设 X_1,X_2,\cdots,X_n 为总体X的一个样本,求下列概率密度或分布律中的未知参数的矩估计量和最大似然估计量。

(1)

$$f(x) = \begin{cases} \theta \cdot 2^{\theta} x^{-(\theta+1)}, & x > 2, \\ 0, & \text{others} \end{cases}$$

其中 $\theta > 1, \theta$ 为未知参数.

(2)

$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta} - 1}, & 0 \le x \le 1, \\ 0, & \text{others} \end{cases}$$

其中 $\theta > 0$, θ 为未知参数.

解: (1)

【矩估计】

计算该分布情况下的期望值:

$$\mu = \int_{-\infty}^{\infty} x f(x) dx = \int_{2}^{\infty} x \theta 2^{\theta} x^{-(\theta+1)} dx = \theta 2^{\theta} \int_{2}^{\infty} x^{-\theta} dx = \frac{\theta 2^{\theta} x^{-\theta+1}}{-\theta+1} \bigg|_{2}^{+\infty} = \frac{2\theta}{\theta-1}$$

由此得:

$$\theta = \frac{\mu}{\mu - 2}$$

而我们知道,样本的均值为 \bar{X} ,按照矩估计的思路,样本均值 \bar{X} 等于总体期望 μ ,于是得到 θ 的矩估计量为:

$$\widehat{\theta} = \frac{\overline{X}}{\overline{X} - 2}$$

【最大似然估计】

似然函数为

$$egin{align} L &= L(X_1, X_2, \cdots, X_n; heta) = \prod_{i=1}^n heta 2^{ heta} X_i^{-(heta+1)} = (heta 2^{ heta})^n \prod_{i=1}^n X_i^{-(heta+1)} \ &= (heta 2^{ heta})^n igg(\prod_{i=1}^n X_iigg)^{-(heta+1)} \end{split}$$

最大似然估计的特征在于找到合适 θ 使得L最大,这时可以用导数解决问题,而显

然此时L对 θ 求导难以操作,我们应使用对数方式求导:

$$\mathrm{ln} L = n \left(\mathrm{ln} \, heta + heta \, \mathrm{ln} \, 2
ight) - (heta + 1) \mathrm{ln} igg(\prod_{i=1}^n X_i igg)$$

令

$$rac{\mathrm{d}}{\mathrm{d} heta} \ln L = n \Big(rac{1}{ heta} + \ln 2\Big) - \sum_{i=1}^n \ln X_i = 0$$

通过该方程解出估计量:

$$\hat{ heta} = rac{1}{\left(rac{1}{n}\sum_{i=1}^n \ln X_i - \ln 2
ight)}$$

(2)【矩估计】

$$\mu = \int_0^1 x \sqrt{\theta} x^{\sqrt{\theta} - 1} dx = \int_0^1 \sqrt{\theta} x^{\sqrt{\theta}} dx = \frac{\sqrt{\theta}}{\sqrt{\theta} + 1}$$

由此得

$$\theta = \left(\frac{\mu}{1-\mu}\right)^2$$

在上式中以 \bar{X} 代替 μ ,得 θ 的矩估计量为

$$\hat{\theta} = \left(\frac{\bar{X}}{1 - \bar{X}}\right)^2$$

【最大似然估计】

$$\begin{split} L &= \prod_{i=1}^n \sqrt{\theta} \, X_i^{\sqrt{\theta} - 1} = \theta^{n/2} \bigg(\prod_{i=1}^n X_i \bigg)^{\sqrt{\theta} - 1} \\ &\ln L = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \sum_{i=1}^n \ln X_i \\ &\frac{\mathrm{d}}{\mathrm{d}\theta} \ln L = \frac{n}{2\theta} + \frac{1}{2\sqrt{\theta}} \sum_{i=1}^n \ln X_i = 0 \end{split}$$

解得最大似然估计量为:

$$\hat{ heta} = rac{n^2}{\left(\sum_{i=1}^n \ln X_i
ight)^2}$$

估计的评选标准:设 θ 是总体X分布中的待估参数,其估计量为 $\hat{\theta}$:

- (1) 无偏性: 估计值的期望 $E(\hat{\theta})$ 等于实际参数 θ 的取值。
- (2)有效性:衡量一个估计算法的好坏,估计值的方差越小越好。比如对于同一个待估参数 θ ,存在两个不同的无偏估计量 $\hat{\theta}_1$ 和 $\hat{\theta}_2$,倘若满足 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。
 - (3) 一致性(相合性): 不考。

【例题 7.1.2 基础题】设 X_1, X_2, X_3, X_4 是来自均值为 θ 、方差为 σ^2 的某种分布的样本,其中 θ 未知。设有以下三个估计量:

$$T_1 = \frac{1}{6}(X_1 + X_2) + \frac{1}{3}(X_3 + X_4)$$

$$T_2 = \frac{1}{5}(X_1 + 2X_2 + 3X_3 + 4X_4)$$

$$T_3 = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$$

- (1) 指出 T_1, T_2, T_3 中哪几个是 θ 的无偏估计量。
- (2) 在上述θ的无偏估计中指出哪一个较为有效。

解:

(1) 已知对于均值为 θ 的指数分布总体X,有 $E(X) = \theta$, $D(X) = \sigma^2$,于是 $E(X_i) = \theta$, $D(X_i) = \theta^2$,i = 1,2,3,4。所以:

$$E(T_1) = \frac{1}{6} [E(X_1) + E(X_2)] + \frac{1}{3} [E(X_3) + E(X_4)] = \frac{\theta}{3} + \frac{2\theta}{3} = \theta$$

$$E(T_2) = \frac{1}{5} [E(X_1) + 2E(X_2) + 3E(X_3) + 4E(X_4)] = 2\theta$$

$$E(T_3) = \frac{1}{4} [E(X_1) + E(X_2) + E(X_3) + E(X_4)] = \theta$$

以上结果表明 T_1 , T_3 都是 θ 的无偏估计量,但 T_2 不是 θ 的无偏估计量. (2)

$$D(T_1) = D\left[\frac{1}{6}(X_1 + X_2) + \frac{1}{3}(X_3 + X_4)\right]$$

$$= \frac{1}{36}D(X_1 + X_2) + \frac{1}{9}D(X_3 + X_1) = \frac{2\sigma^2}{36} + \frac{2\sigma^2}{9} = \frac{5}{18}\sigma^2$$

$$D(T_3) = D\left[\frac{1}{4}(X_1 + X_2 + X_3 + X_4)\right] = \frac{1}{16}\sum_{i=1}^4 D(X_i) = \frac{1}{4}\sigma^2$$
其中 $D(T_3) < D(T_1)$,可见 T_3 的估计更加有效。

【例题 7.1.3 基础题】(2021 数学一/数学三5分)设 $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$

为 来 自 总 体 $N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$ 的 简 单 随 机 样 本 . 令 $\theta = \mu_1 - \mu_2, \bar{X} =$

$$rac{1}{n}\sum_{i=1}^n X_i, ar{Y} = rac{1}{n}\sum_{i=1}^n Y_i, \hat{ heta} = ar{X} - ar{Y}$$
 ,则

- A. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$.
- B. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$.
- C. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{n}$.
- D. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{n}$.

答案: C

【例题 7.1.4 基础题】(2021 数学三 5 分)设总体X的概率分布为 $P\{X=1\}=\frac{1-\theta}{2}, P\{X=2\}=P\{X=3\}=\frac{1+\theta}{4} . 利用来自总体<math>X$ 的样本值 1,3,2,2,1,3,1,2,可得 θ 的最大似然估计值为

- A. $\frac{3}{8}$.
- B. $\frac{1}{4}$.
- C. $\frac{1}{2}$.
- D. $\frac{5}{8}$.

答案: B

【例题 7.1.5 基础题】(2022 数学一/数学三 12分)设 X_1,X_2,\cdots,X_n 为来自均值为 θ 的指数分布总体的简单随机样本, Y_1,Y_2,\cdots,Y_m 为来自均值为 θ 的指数分布总体的简单随机样本,且两样本相互独立,其中 $\theta(\theta>0)$ 是未知参数。利用样本 $X_1,X_2,\cdots,X_n,Y_1,Y_2,\cdots,Y_m$,求 θ 的最大似然估计量 $\hat{\theta}$,并求 $D(\hat{\theta})$ 。

答案:

$$egin{align} \hat{ heta} &= rac{2nar{X} + mar{Y}}{2\left(n+m
ight)} \ ar{X} &= rac{1}{n}\sum_{i=1}^n X_i \;,\;\; ar{Y} &= rac{1}{m}\sum_{j=1}^m Y_j \ D(\hat{ heta}) &= rac{ heta^2}{n+m} \ \end{align}$$

【例题 7.1.6 中等题】(2023 数学一/数学三 5分)设 X_1,X_2 为来自总体 $N(\mu,\sigma^2)$ 的简单随机样本,其中 $\sigma(\sigma>0)$ 是未知参数。若 $\hat{\sigma}=a|X_1-X_2|$ 为 σ 的无偏估计,则 a=

- A. $\frac{\sqrt{\pi}}{2}$.
- B. $\frac{\sqrt{2\pi}}{2}$
- C. $\sqrt{\pi}$.
- D. $\sqrt{2\pi}$.

答案: A

【例题 7.1.7 中等题】(2024 数学一/数学三 12分)设总体X 服从 $[0,\theta]$ 上的均匀分布,其中 $\theta \in (0,+\infty)$ 为未知参数. X_1,X_2,\cdots,X_n 是来自总体X 的简单随机样本,记 $X_{(n)} = \max\{X_1,X_2,\cdots,X_n\}, T_c = cX_{(n)}$.

- (1) 求c, 使得 T_c 是 θ 的无偏估计;
- (2) 记 $h(c) = E(T_c \theta)^2$, 求c使得h(c)最小.

答案: (1)
$$\frac{n+1}{n}$$
.

$$(2) \quad \frac{n+2}{n+1} \, .$$

7.2 区间估计

原理:

- (1) 当总体的方差已知时,则有 $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$;
- (2) 当总体的方差未知时,则有 $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim t(n-1)$,
- (3) 总体的方差分布情况为: $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 。

参	参数	公式解释	
			$ar{X}$: 样本均值
	σ^2 $ □$	$\bar{X} \pm z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	$z_{\frac{\alpha}{2}}$: 标准正态分布的上 $\frac{\alpha}{2}$ 分位点
期望	知		σ: 总体标准差
μ			n: 样本数
	σ^2 未		$ar{X}$: 样本均值
	知	$\bar{X} \pm t_{\frac{\alpha}{2}, n-1} \cdot \frac{S}{\sqrt{n}}$	$t_{\frac{\alpha}{2},n-1}$: t 分布 (参数 $n-1$) 的上

方差 σ^2

$$\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}},\,\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right)$$

 $\chi^2_{\frac{\alpha}{2},n-1}$: χ^2 分布(参数n-1)的

上 $\frac{\alpha}{2}$ 分位点

S²: 样本方差

n: 样本数

【例题 7.2.1 基础题】随机采访9位观众对一部电影的评分(满分10分),结果 如下:

5. 7 5.8 6. 5 7. 0 6.0 6.3 5. 6 假定评分的总体服从正态分布 $N(\mu,\sigma^2)$. 在下述情形下分别求出该电影评分的总体 的平均值(期望) μ ,置信水平为 $1-\alpha=0.95$ 。

- (1) 根据以往经验,知道观众评分的标准差 $\sigma = 0.6$ 。
- (2) 不知道评分的标准差 σ 。

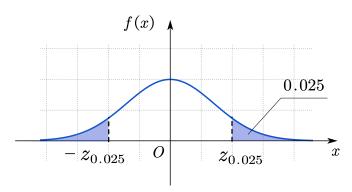
解: 通过计算可知,该样本的均值为 $\overline{X} = 6.0$,方差为 $S^2 = 0.33$.

(1) 在已知总体标准差情况下,有如下情况:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

目标是确定两端的界限(-c,c), 使得

$$P\left\{-c \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le c\right\} = 0.95$$



根据正态分布的特点可知,这里的c即为标准正态分布的 0.025 上分位点,记为 $z_{0.025}$ 。通过查表得知:

$$z_{0.025} = 1.96$$

所以我们可知:

$$-1.96 \le \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \le 1.96$$

代入 $\bar{X} = 6$, $\sigma = 0.6$, n = 9, 可以确定 μ 的取值范围:

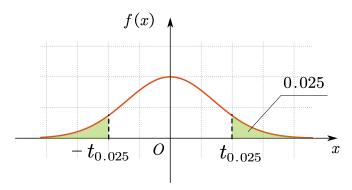
$$5.608 \le \mu \le 6.392$$

(2) 在未知总体标准差情况下,有如下情况:

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t (n - 1)$$

目标是确定两端的界限(-c,c), 使得

$$P\left\{-c \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le c\right\} = 0.95$$



这里的c即为t(8)分布的 0.025 上分位点,记为 $t_{0.025}$ 。通过查表得知:

$$z_{0.025} = 2.306$$

所以我们可知:

$$-2.306 \le \frac{\bar{X} - \mu}{S / \sqrt{n}} \le 2.306$$

代入 $\bar{X} = 6$, $S = \sqrt{0.33}$, n = 9, 可以确定 μ 的取值范围:

$$5.588 \le \mu \le 6.442$$

【例题 7.2.2 基础题】为研究某种汽车轮胎的磨损特性,随机地选择 16 只轮胎,每只轮胎行驶到磨坏为止,记录所行驶的路程(以 km 计)如下:

41250 40187 43175 41010 39265 41872 42654 41287 38970 40200 42550 41095 40680 43500 39775 40400

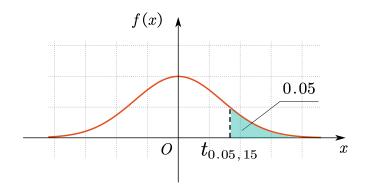
假设这些数据来自正态总体 $N(\mu,\sigma^2)$,其中 μ,σ^2 未知,试求 μ 的置信水平为 0.95的单侧置信下限。

解:由于不知总体方差,使用公式为:

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

由于所求内容为置信下限,即

$$P\left\{\frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{\alpha, n-1}\right\} = 1 - \alpha$$



通过查表得: $t_{0.05}(15) = 1.7531$, 代入n = 16, $\overline{X} = 41116.875$, s = 1346.842, 可得:

$$\frac{41116.875 - \mu}{1346.842 / \sqrt{16}} < 1.7531$$

得 μ 的置信水平为 $1-\alpha$ 的单侧置信下限为

$$\mu = 41116.875 - \frac{1346.842}{4} \times 1.7531 = 40527$$

大于号, 找正数;

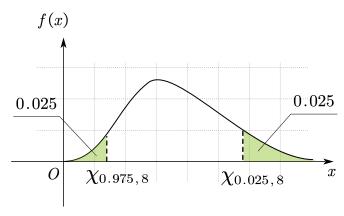
小于号, 找负数。

割区间, 切尾巴。

【例题 7.2.3 基础题】随机地取某种炮弹 9 发做试验,得炮口速度的样本标准差 s=11m/s.设炮口速度服从正态分布.求这种炮弹的炮口速度的标准差 σ 的置信水平为 0.95 的置信区间。

解: 样本方差服从如下分布:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$



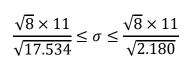
代入n = 9, s = 11, $1 - \alpha = 0.95$, 通过查表可得:

$$\chi_{a/2}^2(n-1) = \chi_{0.025}^2(8) = 17.534$$

$$\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(8) = 2.180$$

$$2.180 \le \frac{8S^2}{\sigma^2} \le 17.534$$

得到标准差σ的一个置信水平为 0.95 的置信区间如下:



$$7.4 \le \sigma \le 21.1$$

7.3 假设检验

假设检验的类型与原理,与区间估计的几乎一致。但是以下概念需要清楚:

原假设和备择假设:称需要着重考察的假设为原假设,原假设常记为 H_0 ;与原

假设相对立的假设称为备择假设或对立假设,备择假设常记为 H_1 .

检验统计量:如果基于某一个统计量的观测值来确定接受 H_0 或拒绝 H_0 时,这一统计量称为检验统计量.

拒绝域和临界点: 当检验统计量的观测值落在某个区域时就拒绝 H_0 ,这一区域称为拒绝域,拒绝域的边界点称为临界点.

显著性水平 α : 是一个小的正数,在作检验时要求犯第 I 类错误的概率 $\leq \alpha, \alpha$ 称

为检验的显著性水平. α 通常取0.1,0.05,0.01,0.005等值.

假设检验的两类错误: H_0 实际上为真时,而拒绝 H_0 ,这类弃真的错误称为第 I

类错误。 H_0 实际上为假时,而接受 H_0 ,这类取伪的错误称为第 II 类错误。

显著性检验:对于给定的样本容量,只控制犯第 I 类错误的概率,而不考虑犯第 II 类错误的概率的检验法,称为显著性检验.

【例题 7.3.1 基础题】某批矿砂的 5 个样品中的镍含量(以%计), 经测定为 3.25 3.27 3.24 3.26 3.24

设测定值总体服从正态分布,但参数均未知,问在 $\alpha = 0.01$ 下能否接受假设:这批矿砂的镍含量的均值为 3.25?

解:按题意总体 $X\sim N(\mu,\sigma^2)$, μ,σ^2 均未知,要求在显著性水平 $\alpha=0.01$ 下检验假设 H_0 : $\mu=3.25,H_1$: $\mu\neq3.25$.

因 σ^2 未知,故采用t检验,取检验统计量为

$$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

 $\phi \alpha = 0.01$, $t_{\alpha/2}(n-1) = t_{0.005}(4) = 4.6041$, 拒绝域为

$$t_{a/2}(n-1) = 4.6041$$

n = 5, $\bar{x} = 3.252$, s = 0.013, 观察值

$$|t| = \left| \frac{3.252 - 3.25}{0.013/\sqrt{5}} \right| = 0.344 < 4.6041$$

不落在拒绝域之内,故在显著性水平 $\alpha=0.01$ 下接受原假设 H_0 ,即认为这批矿砂镍含量的均值为 3.25.

【例题 7.3.2 基础题】生产者从一批这种元件中随机抽取 25 件,测得其寿命的平均值为 950h. 已知该种元件寿命服从标准差为 $\sigma=100$ h的正态分布. 试在显著性水平 $\alpha=0.05$ 下判断这种元件的整体均值 μ 超过 1000? 即需检验假设 H_0 : $\mu > 1000$, H_1 : $\mu < 1000$.

解:因 σ^2 已知,故采用Z检验,取检验统计量为 $Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$,代入 $n=25,\bar{X}=950,\sigma=100,\alpha=0.05$,可得出:

$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = -2.5$$

确定拒绝域:

$$-z_{0.05} = -1.645$$

可得拒绝域为 $(-\infty, -1.645)$ 。因Z值为-2.5 < -1.645,落在拒绝域内,故在显著性水平 $\alpha = 0.05$ 下拒绝原假设 H_0 ,认为这批元件不合格.

找拒绝,看 H1 大于号,找正数 小于号,找负数 留尾巴,拒绝域

【例题 7.3.3 基础题】一种混杂的小麦品种, 株高的标准差为 $\sigma_0 = 14 \sim \text{cm}$, 经提纯后随机抽取 10 株, 它们的株高(以 cm 计)为

90 105 101 95 100 100 101 105 93 97 考察提纯后的群体是否比原群体整齐?取显著性水平 $\alpha=0.01$,并设小麦株高服从 $N(\mu,\sigma^2)$ 。

解: 需检验假设($\alpha = 0.01$)

$$H_0$$
: $\sigma \geqslant \sigma_0$, H_1 : $\sigma < \sigma_0(\sigma_0 = 14)$.

采用 y²检验. 查表可得:

$$\chi^2_{1-0.01}(9) = 2.088$$

现在n = 10, $s^2 = 24.233$, 观察值为:

$$\frac{(n-1)s^2}{\sigma_0^2} = \frac{218.1}{14^2} = 1.11 < 2.088.$$

故拒绝H₀,认为提纯后的群体比原群体整齐.

【例题 7.3.4 中等题】(2021 数学-5分)设 X_1,X_2,\cdots,X_{16} 是来自总体 $N(\mu,4)$ 的简单随机样本,考虑假设检验问题: $H_0:\mu \le 10, H_1:\mu > 10.\Phi(x)$ 表示标准正态分布函数.若该检验问题的拒绝域为 $W = \{\bar{X} > 11\}$,其中 $\bar{X} = \frac{1}{16}\sum_{i=1}^{16} X_i$,则 $\mu = 11.5$ 时,该

检验犯第二类错误的概率为

- A. $1 \Phi(1)$.
- B. $1-\Phi(0.5)$.
- c. $1 \Phi(1.5)$.
- D. $1 \Phi(2)$.

答案: A

【例题 7.3.5 拔高题】(2025 数学一 5 分)设 X_1, X_2, \cdots, X_n 为来自正态总体

 $N(\mu,2)$ 的简单随机样本,记 $\bar{X}=rac{1}{n}\sum_{i=1}^{n}X_{i},z_{lpha}$ 表示标准正态分布的上侧lpha分位数。假

设检验问题 $H_0:\mu \leq 1, H_1:\mu > 1$ 的显著性水平为 α 的检验的拒绝域为

A.
$$\left\{(X_1,X_2,\cdots,X_n)\mid \overline{X}>1+rac{2}{n}z_lpha
ight\}$$

B.
$$\left\{(X_1,X_2,\cdots,X_n)\mid \overline{X}>1+rac{\sqrt{2}}{n}z_{lpha}
ight\}$$

$$\mathbb{C}.\quad \left\{(X_1,X_2,\cdots,X_n)\mid \overline{X}>1+rac{2}{\sqrt{n}}\,z_lpha
ight\}$$

D.
$$\left\{(X_1,X_2,\cdots,X_n)\mid \overline{X}>1+\sqrt{rac{2}{n}}\,z_lpha
ight\}$$

答案: D